Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Our previous research demonstrated that curcumin suppresses mouse colorectal cancer (CRC) cell CT26 migration and invasion by inhibiting heparanase (HPSE) mRNA expression. To further elucidate the mechanism of curcumin in human CRC treatment, we hypothesized that HPSE plays a pivotal role in human CRC metastasis and that curcumin inhibits this process by downregulating HPSE expression through epigenetic regulation mediated by non-coding RNAs. For further research, human CRC cells were infected with lentivirus to establish overexpression of HPSE cell lines and corresponding negative control cell lines. In vitro and in vivo experiments showed that curcumin inhibited the proliferation, migration, and metastasis of CRC cancer by inhibiting HPSE expression. In the tumor microenvironment, HPSE played an important role in activating the IL-6/STAT5 axis signaling pathway by destructing the extracellular matrix and releasing large number of cytokines, while changing the tumor microenvironment and EMT process, thus promoting tumor metastasis. RNA-seq analysis combined with qRT-PCR results showed that curcumin's inhibition of HPSE expression involved the regulation of non-coding RNAs. Taken together, our results suggested that HPSE promotes CRC metastasis by activating the IL-6/STAT5 signaling axis, disrupting the ECM, releasing cytokines, and altering the tumor microenvironment to facilitate EMT. Curcumin significantly inhibits CRC cell proliferation, migration, and metastasis by downregulating HPSE expression via non-coding RNAs, which related to IL-6/STAT5 axis signal pathways. This research provides a comprehensive understanding of the molecular mechanisms underlying curcumin's anti-CRC effects, emphasizing the role of HPSE and non-coding RNAs in tumor metastasis. These findings pave the way for the development of novel therapeutic strategies targeting HPSE and its regulatory pathways in CRC.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00114-025-01988-yDOI Listing

Publication Analysis

Top Keywords

hpse expression
16
non-coding rnas
16
human crc
12
tumor microenvironment
12
hpse
11
extracellular matrix
8
crc
8
crc cell
8
crc metastasis
8
curcumin inhibits
8

Similar Publications

Pawpaw () Seed Extract Suppresses High-Fat Diet-Induced Obesity in Mice.

Int J Mol Sci

August 2025

Department of Health and Nutrition, Faculty of Human Life Studies, University of Niigata Prefecture, 471 Ebigase, Higashi-ku, Niigata 950-8680, Japan.

(pawpaw), a member of the Annonaceae family, contains various bioactive phytochemicals, including alkaloids, polyphenols, and acetogenins. In this study, the effects of pawpaw seed extract (PSE) on obesity and plasma lipid concentrations were investigated in mice with high-fat diet (HFD)-induced obesity. Male C57BL/6J mice were fed a normal diet (ND) or an HFD for two weeks.

View Article and Find Full Text PDF

Background: Neutrophil extracellular traps (NETs) play an important role in the development of diabetic foot ulcers (DFUs), and improving its progression by targeting the activation and regulation of NETs-related genes (NETRGs) might be an important therapeutic target and deserve further exploration.

Methods: Differentially expressed NETRGs (DENETRGs) were obtained by intersecting the NETRGs and the differentially expressed genes (DEGs) between DFUs and healthy control (HC) samples. The nomogram was constructed with the biomarkers identified by machine learning algorithms.

View Article and Find Full Text PDF

Multiple myeloma (MM) is the second most common hematologic malignancy, heavily relying on the bone marrow microenvironment for its growth, leading to severe clinical complications. A critical factor of MM progression is the aberrant expression of heparanase (HPSE), an enzyme responsible for degrading heparan sulfate (HS) chains in the extracellular matrix (ECM) and cell surface. This degradation fosters tumor cell proliferation, migration, and resistance to chemotherapy.

View Article and Find Full Text PDF

Introduction: Diagnostic delays in tuberculosis (TB) threaten global control efforts, necessitating early detection of active TB (ATB). This study explores neutrophil extracellular traps (NETs) as key mediators of TB immunopathology to identify NETs-related biomarkers for differentiating ATB from latent TB infection (LTBI).

Methods: We analyzed transcriptomic datasets (GSE19491, GSE62525, GSE28623) using differential expression analysis (|log, FC| ≥ 0.

View Article and Find Full Text PDF

Our previous research demonstrated that curcumin suppresses mouse colorectal cancer (CRC) cell CT26 migration and invasion by inhibiting heparanase (HPSE) mRNA expression. To further elucidate the mechanism of curcumin in human CRC treatment, we hypothesized that HPSE plays a pivotal role in human CRC metastasis and that curcumin inhibits this process by downregulating HPSE expression through epigenetic regulation mediated by non-coding RNAs. For further research, human CRC cells were infected with lentivirus to establish overexpression of HPSE cell lines and corresponding negative control cell lines.

View Article and Find Full Text PDF