Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

High-throughput massive parallel sequencing has significantly improved bacterial pathogen genomics, diagnostics, and epidemiology. Despite its high accuracy, short-read sequencing struggles with the complete genome reconstruction and assembly of extrachromosomal elements such as plasmids. Long-read sequencing with Oxford Nanopore Technologies (ONT) presents an alternative that offers benefits including real-time sequencing and cost efficiency, particularly useful in resource-limited settings. However, the historically higher error rates of ONT data have so far limited its application in high-precision genomic typing. The recent release of ONT's R10.4.1 chemistry, with significantly improved raw read accuracy (Q20+), offers a potential solution to this problem. The aim of this study is to evaluate the performance of ONT's latest chemistry for bacterial genomic typing against the gold-standard Illumina technology, focusing on three respiratory pathogens of public health importance, , , and , and their related species. Using the Rapid Barcoding Kit V14, we generate and analyze genome assemblies with different basecalling models, at different simulated depths of coverage. ONT assemblies are compared to the Illumina reference for completeness and core genome multilocus sequence typing (cgMLST) accuracy (number of allelic mismatches). Our results show that genomes obtained from raw ONT data basecalled with Dorado SUP v0.9.0, assembled with Flye, and with a minimum coverage depth of 35×, optimized accuracy for all bacterial species tested. Error rates are consistently <0.5% for each cgMLST scheme, indicating that ONT R10.4.1 data are suitable for high-resolution genomic typing applied to outbreak investigations and public health surveillance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12315706PMC
http://dx.doi.org/10.1101/gr.279829.124DOI Listing

Publication Analysis

Top Keywords

long-read sequencing
8
error rates
8
ont data
8
genomic typing
8
ont
5
sequencing
5
accurate genotyping
4
genotyping three
4
three major
4
major respiratory
4

Similar Publications

IBDV-SSA, a novel molecular approach for the recovery of infectious bursal disease virus whole genomes from FTA cards.

Microbiol Spectr

September 2025

United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Southeast Poultry Research Laboratories, US National Poultry Research Center, Athens, Georgia, USA.

Infectious bursal disease (IBD), a highly contagious viral disease in young chickens, poses significant economic losses due to high mortality and immunosuppression. While IBD virus (IBDV) virulence is influenced by multiple genes, whole-genome sequencing (WGS) of IBDV is crucial for defining the strain pathotype and clinical profile. Flinders Technology Associates (FTA) cards are convenient for field sample collection, but their filter paper matrix can hinder nucleic acid recovery, impacting sequencing efficiency.

View Article and Find Full Text PDF

Despite advances in genomic diagnostics, the majority of individuals with rare diseases remain without a confirmed genetic diagnosis. The rapid emergence of advanced omics technologies, such as long-read genome sequencing, optical genome mapping and multiomic profiling, has improved diagnostic yield but also substantially increased analytical and interpretational complexity. Addressing this complexity requires systematic multidisciplinary collaboration, as recently demonstrated by targeted diagnostic workshops.

View Article and Find Full Text PDF

Background: Clonotyping of immunoglobulin heavy chain (IGH) gene rearrangements is critical for diagnosis, prognostication, and measurable residual disease monitoring in chronic lymphocytic leukemia (CLL). Although short-read next-generation sequencing (NGS) platforms, such as Illumina MiSeq, are widely used, they face challenges in spanning full VDJ rearrangements. Long-read sequencing via Oxford Nanopore Technologies (ONT) offers a potential alternative using the compact and cost-effective flow cells.

View Article and Find Full Text PDF

Advances in Oxford Nanopore Technologies (ONT) with the introduction of the r10.4.1 flow cell have reduced the sequencing error rates to <1%.

View Article and Find Full Text PDF

Benchmarking Ploidy Estimation Methods for Bulk and Single-Cell Whole Genome Sequencing.

Adv Sci (Weinh)

September 2025

Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.

Maintaining cellular ploidy is critical for normal physiological processes, although gains in ploidy are frequently observed during development, tissue regeneration, and metabolism, and potentially contribute to aneuploidy, thereby promoting tumor evolution. Although numerous computational tools have been developed to estimate cellular ploidy from whole-genome sequencing (WGS) data at bulk or single-cell resolution, to the knowledge, no systematic comparison of their performance has been conducted. Here, a benchmarking study is presented of 11 methods for bulk WGS and 8 methods for single-cell WGS data, utilizing both experimental and simulated datasets derived from diploid cells mixed with aneuploid or polyploid cells.

View Article and Find Full Text PDF