Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Neutrophils are the most abundant immune cells that constantly patrol or marginate inside vascular beds to support immune homeostasis. The extent to which neutrophils undergo reprogramming in response to the changes in vascular architecture and the resultant biological implications of such adaptations remain unclear. Here, we performed intravital imaging and transcriptional profiling to investigate neutrophil behavior across different tissues. Our findings revealed that neutrophils had significant deformability and spontaneous calcium signaling while navigating through the narrow pulmonary vessels. Pulmonary neutrophils exhibited unique transcriptional profiles and were specialized for proangiogenic functions. We found that the mechanosensitive ion channel Piezo-type mechanosensitive ion channel component 1 (PIEZO1) was essential for neutrophil reprogramming. Deletion of Piezo1 in neutrophils ablated the lung-specific proangiogenic transcriptional signature and impaired capillary angiogenesis in both physiological and pathological conditions. Collectively, these data show that mechanical adaptation of neutrophils within the pulmonary vasculature drives their reprogramming in the lungs and promotes pulmonary vascular homeostasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12126238PMC
http://dx.doi.org/10.1172/JCI183796DOI Listing

Publication Analysis

Top Keywords

mechanosensitive ion
8
ion channel
8
neutrophils
7
piezo1 mediates
4
mediates mechanical
4
reprogramming
4
mechanical reprogramming
4
reprogramming neutrophils
4
neutrophils proangiogenic
4
proangiogenic specialization
4

Similar Publications

New insights to B cell tolerance involving the mechanosensitive ion channel Piezo1.

BMB Rep

September 2025

Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Institute for Immunology and Immunological Diseases, Yonsei Uni

B cell tolerance is critical for preventing autoimmunity, yet the mechanisms by which B cells discriminate self from non-self antigens remain incompletely understood. While early findings emphasize the role of classical antigen-mediated BCR signaling strength by varying antigen formats, emerging evidence highlights the importance of mechanical cues during antigen recognition. This review explores how mechanosensitive ion channels, particularly Piezo1, contribute to B cell activation and tolerance by integrating physical forces at the immune synapse.

View Article and Find Full Text PDF

Neutrophil extracellular traps (NETs)-web-like DNA structures extruded by neutrophils in response to various stimuli, including pathogens, sterile inflammation, and mechanical stress-play a dual role in immunity and disease. While NETs serve to trap and neutralize pathogens during host defense, excessive or dysregulated NET formation, known as NETosis, can amplify inflammation and contribute to thrombotic complications such as atherosclerosis and valve disease. Increasing evidence supports that NETosis is a regulated, signaling-driven process, and that mechanical forces-including shear stress, tensile force, and matrix stiffness-can act as noncanonical danger signals capable of inducing NETosis.

View Article and Find Full Text PDF

The plasma membrane is actively regulated by lipid transporters that create electrochemical gradients between leaflets, and passively by scramblases that dissipate these gradients. Membrane properties such as lipid packing are critical for the proper function of transmembrane proteins, particularly mechanosensitive ion channels. Mechanosensation is a key component of many sensory processes including balance, and hearing.

View Article and Find Full Text PDF

Piezo1, a mechanosensitive cation channel characterized by its distinctive transmembrane trimeric structure, plays a pivotal role in mediating cellular responses to mechanical stimuli. It facilitates calcium influx, and recent studies highlight its involvement in heart failure (HF) pathophysiology, where its dysregulation significantly contributes to disease progression. Specifically, Piezo1 upregulation impacts diverse cellular processes across cardiovascular cell types, including cardiomyocytes, fibroblasts, endothelial cells (ECs), and vascular smooth muscle cells (VSMCs).

View Article and Find Full Text PDF

Biofluid flow generates fluid shear stress (FSS), a mechanical force widely present in the tissue microenvironment. How brain tumour growth alters the conduit of biofluid and impacts FSS-regulated cancer progression is unknown. Dissemination of medulloblastoma (MB) cells into the cerebrospinal fluid initiates metastasis within the central nervous system.

View Article and Find Full Text PDF