98%
921
2 minutes
20
The power conversion efficiency (PCE) of single-junction perovskite solar cells has increased dramatically since their inception. In cesium lead iodide perovskite/silicon (CsPbI/Si) tandem solar cells (TSCs), Shockley-Read-Hall (SRH), radiative, and thermodynamic recombination losses are the primary source of voltage loss and govern the PCE of the device. Although the Shockley-Queisser (SQ) limit for power conversion efficiency of CsPbI/Si TSC is ∼40%, realizing this is difficult due to recombination losses and thermal instability of CsPbI. The proper choice of material and a suitable device structure can improve these. In this study, we used a thermally stable phase of CsPbI and optimize the SRH recombination loss in a CsPbI-based standalone inverted architecture solar cell device with configuration FTO/SnO/C/CsPbI/2F (4-(7-(4-bis-(4-methylphenyl) amino)-2,5-difluorophenyl) benzol [] [1,2,5] thiadiazol-4-yl) benzoic acid). An optimized standalone CsPbI-based solar cell exhibits outstanding performance with an open-circuit voltage of 1219.0 mV, short-circuit current density of 21.28 mA/cm, fill factor of 81.99%, and PCE of 21.27%. Further, we have integrated this optimized CsPbI-based standalone solar cell over a highly efficient silicon (Si) heterojunction solar cell, i.e., IZO/-nc-SiO /-a-Si:H/-c-Si/-a-Si:H/-nc-Si:H, in series to model the CsPbI/Si two-terminal (2T) TSC in current-matching conditions utilizing filtered spectrum. In an optimized condition, the PCEs of 2T monolithic and 4T mechanically stacked TSCs are 34.05 and 33.89%, respectively. All the simulation results are well corroborated with the experimental findings, providing a robust validation of the proposed simulation models and inspiring hope for future highly efficient device fabrication.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12120622 | PMC |
http://dx.doi.org/10.1021/acsomega.5c00035 | DOI Listing |
Beilstein J Nanotechnol
August 2025
Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León. San Nicolás de los Garza, Nuevo León, 66455, México.
Nanoparticles in their pure colloidal form synthesized by laser-assisted processes such as laser ablation/fragmentation/irradiation/melting in liquids have attained much interest from the scientific community because of their specialties like facile synthesis, ultra-high purity, biocompatibility, colloidal stability in addition to other benefits like tunable size and morphology, crystalline phases, new compounds and alloys, and defect engineering. These nanocolloids are useful for fabricating different devices mainly with applications in optoelectronics, catalysis, sensors, photodetectors, surface-enhanced Raman spectroscopy (SERS) substrates, and solar cells. In this review article, we describe different methods of nanocolloidal synthesis using laser-assisted processes and corresponding thin film fabrication methods, particularly those utilized for device fabrication and characterization.
View Article and Find Full Text PDFRSC Adv
September 2025
School of Engineering and Technology, National Textile University 37640 Faisalabad Pakistan
[This retracts the article DOI: 10.1039/D4RA01544D.].
View Article and Find Full Text PDFCurr Biol
September 2025
Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Göttingen, Goldschmidtstr. 1, 37077 Göttingen, Germany; Research Training Group 2984 Evolutionary Genomics: Consequences of Biodiverse Reproductive Systems (EvoReSt) and IMPRS Molecular Biology, Department
A new study shows that Sacoglossan sea slugs sequester stolen plastids in arrested phagosomes called 'kleptosomes', redefining how these organelles are compartmentalized and regulated in animal cells. Under normal conditions, the plastids are supported and maintained, but starvation causes their degradation, supporting a potential nutritional role.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
School of Chemistry and Chemical Engineering, Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, Hunan University of Science and Technology, Xiangtan, 411201, P. R. China.
Additive assisted strategies play a crucial role in optimizing the morphology and improving the performance of organic solar cells (OSCs), yet the molecular-level mechanisms remain unclear. Here, we employ molecular dynamics (AIMD) and density functional theory (DFT) to elucidate the influence of typical additives of 1,8-diiodooctane (DIO) and 3,5-dichlorobromobenzene (DCBB) on molecular packing, electronic structures, and charge transport. It can be observed that both additives can enhance the stacking properties of the donor and acceptor materials, yet they have different effects on the local electrostatic environment.
View Article and Find Full Text PDFNanomicro Lett
September 2025
College of New Materials and New Energies, Shenzhen Technology University, Lantian Road 3002, Pingshan, 518118, Shenzhen, People's Republic of China.
The introduction of two-dimensional (2D) perovskite layers on top of three-dimensional (3D) perovskite films enhances the performance and stability of perovskite solar cells (PSCs). However, the electronic effect of the spacer cation and the quality of the 2D capping layer are critical factors in achieving the required results. In this study, we compared two fluorinated salts: 4-(trifluoromethyl) benzamidine hydrochloride (4TF-BA·HCl) and 4-fluorobenzamidine hydrochloride (4F-BA·HCl) to engineer the 3D/2D perovskite films.
View Article and Find Full Text PDF