Research approaches for exploring the hidden conversations of G protein-coupled receptor transactivation.

Mol Pharmacol

Department of Brain Sciences, DGIST, Daegu, Republic of Korea; Core Protein Resources Center, DGIST, Daegu, Republic of Korea; Center for Synapse Diversity and Specificity, DGIST, Daegu, Republic of Korea. Electronic address:

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

G protein-coupled receptor (GPCR) signaling is a crucial physiological mechanism that encompasses a wide range of signaling phenomena. Although traditional GPCR signaling involves G protein or arrestin-related activation, other modes such as biphasic activation, dimer or oligomeric activation, and transactivation have also been observed. Herein, we focus on the increasingly recognized process of GPCR-transactivation. Transactivation refers to the ability of GPCRs to activate other receptor types, especially receptor tyrosine kinases, without engaging their own specific ligands. This cross-talk between GPCRs and other receptors facilitates the integration of multiple signaling pathways, thereby regulating diverse cellular responses, which underscores its physiological significance. In this review, we provide a comprehensive overview of the role of GPCR-transactivation in physiology. We also discuss the growing interest in this field and examine the various tools available for studying transactivation. Additionally, we highlight recent advancements in emerging tools and their application to GPCR-transactivation research. Finally, we propose future research directions and consider the potential impact of new technologies in this rapidly evolving field. SIGNIFICANCE STATEMENT: G protein-coupled receptor transactivation plays a key role in integrating multiple signaling pathways by activating other proteins, like receptor tyrosine kinases, without binding their specific ligands. Here, we focus on the significance of transactivation and the various approaches used to study this phenomenon.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molpha.2025.100043DOI Listing

Publication Analysis

Top Keywords

protein-coupled receptor
12
receptor transactivation
8
gpcr signaling
8
receptor tyrosine
8
tyrosine kinases
8
specific ligands
8
multiple signaling
8
signaling pathways
8
receptor
6
transactivation
6

Similar Publications

S-nitrosylation of pVHL regulates β adrenergic receptor function.

Proc Natl Acad Sci U S A

September 2025

Department of Medicine, Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106.

The β-adrenergic receptor (βAR), a prototype G protein-coupled receptor, controls cardiopulmonary function underpinning O delivery. Abundance of the βAR is canonically regulated by G protein-coupled receptor kinases and β-arrestins, but neither controls constitutive receptor levels, which are dependent on ambient O. Basal βAR expression is instead regulated by the prolyl hydroxylase/pVHL-E3 ubiquitin ligase system, explaining O responsivity.

View Article and Find Full Text PDF

Agonist-induced interaction of G protein-coupled receptors (GPCRs) with β-arrestins (βarrs) is a critical mechanism that regulates the spatiotemporal pattern of receptor localization and signaling. While the underlying mechanism governing GPCR-βarr interaction is primarily conserved and involves receptor activation and phosphorylation, there are several examples of receptor-specific fine-tuning of βarr-mediated functional outcomes. Considering the key contribution of conformational plasticity of βarrs in driving receptor-specific functional responses, it is important to develop novel sensors capable of reporting distinct βarr conformations in cellular context.

View Article and Find Full Text PDF

Transglutaminase-catalyzed glycosylation of egg white peptides: Structural modulation and molecular mechanism of umami enhancement via T1R1/T1R3 interactions.

Food Res Int

November 2025

Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, People's Republic of China; College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China. Electronic address:

Egg white peptides (EWPs) face significant flavor challenges due to bitterness, limiting their high-value applications. This study prepared egg white glycopeptides (EWGP) through transglutaminase-catalyzed glycosylation to investigate their flavor enhancement effect. Egg white protein was hydrolyzed by neutral protease and covalently bound to glucosamine under the mediation of transglutaminase to obtain EWGP.

View Article and Find Full Text PDF

Muricholic acid mediates puberty initiation via the hypothalamic TGR5 signaling pathway.

Proc Natl Acad Sci U S A

September 2025

Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China.

The onset of puberty is increasingly observed at earlier ages in children, especially in girls with obesity, a trend that predisposes them to long-term metabolic and reproductive disorders in adulthood. Bile acids have emerged as pivotal signaling molecules in both metabolic and reproductive disorders, but remain unexplored in the early onset of puberty in children. Herein, we find elevated levels of muricholic acid (MCA) species in the serum of girls with central precocious puberty, which strongly correlate with indices of hypothalamic-pituitary-gonadal axis activation and can reach peak levels during puberty among healthy children.

View Article and Find Full Text PDF

Mast cells (MCs) are effectors of anaphylactoid reactions. Mas-related G-protein-coupled receptor X2 (MRGPRX2) receptor mediates the direct activation of MCs in anaphylactoid disease. Siglec-6 negatively regulates MC activation and is a promising target in the development of antianaphylactoid reaction drugs.

View Article and Find Full Text PDF