A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Mechanistic insights into the stimulation of the histone H3K9 methyltransferase Clr4 by proximal H3K14 ubiquitination. | LitMetric

Mechanistic insights into the stimulation of the histone H3K9 methyltransferase Clr4 by proximal H3K14 ubiquitination.

Sci Adv

New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China.

Published: May 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

H3K9 methylation, a conserved heterochromatin marker, is crucial for chromosome segregation and gene regulation. Clr4 is the sole known methyltransferase catalyzing H3K9 methylation in . Clr4 K455/K472 automethylation and H3K14 ubiquitination (H3K14Ub) are vital activators of Clr4, ensuring appropriate heterochromatin deposition and preventing deleterious silencing. While automethylation's activation mechanism is uncovered, the mechanism of H3K14Ub's significantly stronger stimulation on Clr4 remains unclear. Here, we determined the crystal structures of Clr4 bound to ubiquitinated and unmodified H3 peptides at 2.60 and 2.39 angstrom, which revealed a synergistic mechanism underlying the pronounced stimulatory effect: H3K14Ub increases substrate affinity through multivalent interactions and facilitates the allosteric transition of Clr4 from an inactive apo conformation to a hyperactive "catalyzing state," including conformational changes in the αC-SET-insertion region, autoregulatory loop, and the β9/10 loop. We finally propose a multilevel structural model for the Clr4 catalytic-regulatory cycle. This work provides structural insights into the interplay between histone modifications and their collective impact on epigenetic regulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12124358PMC
http://dx.doi.org/10.1126/sciadv.adu1864DOI Listing

Publication Analysis

Top Keywords

clr4
8
h3k14 ubiquitination
8
h3k9 methylation
8
mechanistic insights
4
insights stimulation
4
stimulation histone
4
histone h3k9
4
h3k9 methyltransferase
4
methyltransferase clr4
4
clr4 proximal
4

Similar Publications