Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Accurate classification of midpalatal suture maturation stages is critical for orthodontic diagnosis, treatment planning, and the assessment of maxillary growth. Cone Beam Computed Tomography (CBCT) imaging offers detailed insights into this craniofacial structure but poses unique challenges for deep learning image recognition model design due to its high dimensionality, noise artifacts, and variability in image quality. To address these challenges, we propose a novel technique that highlights key image features through a simple filtering process to improve image clarity prior to analysis, thereby enhancing the learning process and better aligning with the distribution of the input data domain. Our preprocessing steps include region-of-interest extraction, followed by high-pass and Sobel filtering for emphasis of low-level features. The feature extraction integrates Convolutional Neural Networks (CNN) architectures, such as EfficientNet and ResNet18, alongside our novel Multi-Filter Convolutional Residual Attention Network (MFCRAN) enhanced with Discrete Cosine Transform (DCT) layers. Moreover, to better capture the inherent order within the data classes, we augment the supervised training process with a ranking loss by attending to the relationship within the label domain. Furthermore, to adhere to diagnostic constraints while training the model, we introduce a tailored data augmentation strategy to improve classification accuracy and robustness. In order to validate our method, we employed a k-fold cross-validation protocol on a private dataset comprising 618 CBCT images, annotated into five stages (A, B, C, D, and E) by expert evaluators. The experimental results demonstrate the effectiveness of our proposed approach, achieving the highest classification accuracy of 79.02%, significantly outperforming competing architectures, which achieved accuracies ranging from 71.87 to 78.05%. This work introduces a novel and fully automated framework for midpalatal suture maturation classification, marking a substantial advancement in orthodontic diagnostics and treatment planning.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12122694 | PMC |
http://dx.doi.org/10.1038/s41598-025-03778-y | DOI Listing |