Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ultrafast transmission electron microscopy (UTEM) has emerged as a versatile technique for the time-resolved imaging of nanoscale dynamics on timescales down to few-hundred attoseconds but the temporal and spatial resolutions are still limited by the coherence properties of pulsed electron sources. Here, we report the development of a novel laser-driven linear cold field electron emitter integrated in a state-of-the-art UTEM system. Tuning the emitter's workfunction via an applied extraction field and illuminating the sharp tungsten emitter tip with UV light pulses generates ultrashort femtosecond electron pulses of 220 fs pulse duration at 200 keV electron energy, with energy widths as low as 360 meV. The photoelectron emitter demonstrates exceptional spatial coherence, achieving focal spot sizes down to 2 Å and a peak normalized brightness exceeding 6.7 ×10 A/msr. With an order-of-magnitude improvement compared to previously employed laser-driven Schottky field emitters, the present development opens up the field of ultrafast atomic-scale electron probing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultramic.2025.114158DOI Listing

Publication Analysis

Top Keywords

cold field
8
ultrafast transmission
8
transmission electron
8
electron microscopy
8
electron
7
field
5
laser-driven cold
4
field emission
4
emission source
4
source ultrafast
4

Similar Publications

Distribution and Risk Factors of Scrub Typhus in South Korea, From 2013 to 2019: Bayesian Spatiotemporal Analysis.

JMIR Public Health Surveill

September 2025

Department of Preventive Medicine, College of Medicine, Korea University, 73 Goryeodae-ro, Seoungbuk-gu, Seoul, 02841, Republic of Korea, 82 2-2286-1169.

Background: Scrub typhus (ST), also known as tsutsugamushi disease, is a common febrile vector-borne illness in South Korea, transmitted by trombiculid mites infected with Orientia tsutsugamushi, with rodents serving as the main hosts. Although vector-borne diseases like ST require both a One Health approach and a spatiotemporal perspective to fully understand their complex dynamics, previous studies have often lacked integrated analyses that simultaneously address disease dynamics, vectors, and environmental shifts.

Objective: We aimed to explore spatiotemporal trends, high-risk areas, and risk factors of ST by simultaneously incorporating host and environmental information.

View Article and Find Full Text PDF

The recent observational evidence of deviations from the Lambda cold dark matter model points toward the presence of evolving dark energy. The simplest possibility consists of a cosmological scalar field φ, dubbed "quintessence," driving the accelerated expansion. We assess the evidence for the existence of such a scalar field.

View Article and Find Full Text PDF

Despite periods of permanent darkness and extensive ice coverage in polar environments, photosynthetic ice diatoms display a remarkable capability of living inside the ice matrix. How these organisms navigate such hostile conditions with limited light and extreme cold remains unknown. Using a custom subzero temperature microscope during an Arctic expedition, we present the finding of motility at record-low temperatures in a Eukaryotic cell.

View Article and Find Full Text PDF

The German Federal Ex Situ Genebank for Agricultural and Horticultural Crops (IPK) harbours over 3000 pea plant genetic resources (PGRs), backed up by corresponding information across 16 key agronomic and economical traits. The unbalanced structure and inconsistent format of this historical data has precluded effective leverage of genebank accessions, despite the opportunities contained in its genetic diversity. Therefore, a three-step statistical approach founded in linear mixed models was implemented to enable a rigorous and targeted data curation.

View Article and Find Full Text PDF

Generation and phenotypic characterization of a sigma-1 receptor knockout rat.

Life Sci

September 2025

Department of Pharmacology, Faculty of Medicine, University of Granada, 18016, Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, 18100, Granada, Spain; Biosanitary Research Institute ibs.GRANADA, 18012, Granada, Spain. Electronic address: fnieto@u

The sigma-1 receptor (σ1R) is a chaperone involved in multiple physiological and pathological processes, including pain modulation, neuroprotection, and neurodegenerative diseases. Despite its functional significance, its precise roles remain unclear due to the lack of suitable models for detailed mechanistic studies. In this work, we describe the generation and phenotypic characterization of a novel σ1R knockout (σ1R KO) rat model.

View Article and Find Full Text PDF