98%
921
2 minutes
20
Automatic cell-type annotation methods assign cell-type labels to new, unlabeled datasets by leveraging relationships from a reference RNA-seq atlas. However, new datasets may include labels absent from the reference dataset or exhibit feature distributions that diverge from it. These scenarios can significantly affect the reliability of cell type predictions, a factor often overlooked in current automatic annotation methods. The field of out-of-distribution detection (OOD), primarily focused on computer vision, addresses the identification of instances that differ from the training distribution. Therefore, the implementation of OOD methods in the context of novel cell type annotation and data shift detection for single-cell transcriptomics may enhance annotation accuracy and trustworthiness. We evaluate six OOD detection methods: LogitNorm, MC dropout, Deep Ensembles, Energy-based OOD, Deep NN, and Posterior networks, for their annotation and OOD detection performance in both synthetical and real-life application settings. We show that OOD detection methods can accurately identify novel cell types and demonstrate potential to detect significant data shifts in non-integrated datasets. Moreover, we find that integration of the OOD datasets does not interfere with OOD detection of novel cell types.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12121363 | PMC |
http://dx.doi.org/10.1093/bib/bbaf239 | DOI Listing |
Comput Methods Programs Biomed
September 2025
Eindhoven University of Technology, Department of Biomedical Engineering, Medical Image Analysis Group, Eindhoven, The Netherlands. Electronic address:
Background And Objective: Out-of-distribution (OOD) detection is crucial for safely deploying automated medical image analysis systems, as abnormal patterns in images could hamper their performance. However, OOD detection in medical imaging remains an open challenge. In this study, we aim to optimize a reconstruction-based autoencoder specifically for OOD detection.
View Article and Find Full Text PDFMed Image Anal
December 2025
School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Shaanxi Provincial Key Laboratory of Big Data Knowledge Engineering, Xi'an Jiaotong University, Xi'an, 710049, China. Electronic address:
Modern Computational pathology (CPath) models aim to alleviate the burden on pathologists. However, once deployed, these models may generate unreliable predictions when encountering data types not seen during training, potentially causing a trust crisis within the computational pathology community. Out-of-distribution (OOD) detection, acting as a safety measure before model deployment, demonstrates significant promise in ensuring the reliable use of models in real clinical application.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
August 2025
In real-world scenarios, distribution shifts give rise to the importance of two problems: out-of-distribution (OoD) generalization, which focuses on models' generalization ability against covariate shifts (i.e., the changes of environments), and OoD detection, which aims to be aware of semantic shifts (i.
View Article and Find Full Text PDFJ Biomed Inform
September 2025
University of Pittsburgh, Pittsburgh, PA, USA. Electronic address:
Objective: In biomedical research, knowledge about the relationships between entities, including genes, proteins, and drugs, is vital for elucidating complex biological processes and intracellular pathway mechanisms. While natural language processing (NLP) methods have shown great success in biomedical relation extraction (RE), extracted relations often lack contextual information such as cell type, cell line, and intracellular location. Previous studies treated this problem as a post hoc context-relation association task, limited by the absence of a golden standard corpus and prone to error propagation.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
July 2025
In general, learning plentiful knowledge corresponding to known objects is an important ability for humans. The unknown objects could be assumed to depart from the familiar knowledge. Inspired by this idea, we explore leveraging the extracted knowledge to reason a set of unknown concepts.
View Article and Find Full Text PDF