Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: In the fight against antimicrobial resistance, mathematical transmission models have been shown as a valuable tool to guide intervention strategies in public health.
Objective: This review investigates the persistence of modelling gaps identified in earlier studies. It expands the scope to include a broader range of control measures, such as monoclonal antibodies, and examines the impact of secondary infections.
Methods: This review was conducted according to the PRISMA guidelines. Gaps in model focus areas, dynamics, and reporting were identified and described. The TRACE paradigm was applied to selected models to discuss model development and documentation to guide future modelling efforts.
Results: We identified 170 transmission studies from 2010 to May 2022; Mycobacterium tuberculosis (n = 39) and Staphylococcus aureus (n = 27) resistance transmission were most commonly modelled, focusing on multi-drug and methicillin resistance, respectively. Forty-one studies examined multiple interventions, predominantly drug therapy and vaccination, showing an increasing trend. Most studies were population-based compartmental models (n = 112). The TRACE framework was applied to 39 studies, showing a general lack of description of test and verification of modelling software and comparison of model outputs with external data.
Conclusion: Despite efforts to model antimicrobial resistance and prevention strategies, significant gaps in scope, geographical coverage, drug-pathogen combinations, and viral-bacterial dynamics persist, along with inadequate documentation, hindering model updates and consistent outcomes for policymakers. This review highlights the need for robust modelling practices to enable model refinement as new data becomes available. Particularly, new data for validating modelling outcomes should be a focal point in future modelling research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12121249 | PMC |
http://dx.doi.org/10.1186/s13756-025-01574-x | DOI Listing |