Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Artificial musculoskeletal systems mimic mammalian biomechanics using antagonistic muscles and rigid skeletons. They offer benefits such as adjustable stiffness, back-drivability, and muscle failure tolerance but are difficult to model and control due to redundancies across task, joint, and muscle activation spaces, compounded by complex muscle dynamics and motion-dependent moment arms. Analytical methods require detailed system knowledge and lack scalability, while model-free approaches often rely on manual tuning and rarely exploit motor redundancy. This work introduces a model-free, biologically inspired kinematic controller based on reflex circuits that self-organise via Hebbian learning driven by Spontaneous Motor Activity (SMA). These circuits are then integrated to create a computationally inexpensive task-space controller, requiring minimal training and no analytical modelling. Simulations with six- and twelve-muscle models show that the interaction between reflex circuits, morphology, and gain modulation produces coordinated muscle synergies for human-like target reaching. Unlike previous control methods, it is easily scalable, can automatically handle unknown disturbances, and compensates for inaccessible muscles without re-training or manual intervention while maintaining high control accuracy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1748-3190/adde08 | DOI Listing |