Artificial musculoskeletal systems mimic mammalian biomechanics using antagonistic muscles and rigid skeletons. They offer benefits such as adjustable stiffness, back-drivability, and muscle failure tolerance but are difficult to model and control due to redundancies across task, joint, and muscle activation spaces, compounded by complex muscle dynamics and motion-dependent moment arms. Analytical methods require detailed system knowledge and lack scalability, while model-free approaches often rely on manual tuning and rarely exploit motor redundancy.
View Article and Find Full Text PDFFront Robot AI
January 2025
Reliable proprioception and feedback from soft sensors are crucial for enabling soft robots to function intelligently in real-world environments. Nevertheless, soft sensors are fragile and are susceptible to various damage sources in such environments. Some researchers have utilized redundant configuration, where healthy sensors compensate instantaneously for lost ones to maintain proprioception accuracy.
View Article and Find Full Text PDFVertebrates possess a biomechanical structure with redundant muscles, enabling adaptability in uncertain and complex environments. Harnessing this inspiration, musculoskeletal systems offer advantages like variable stiffness and resilience to actuator failure and fatigue. Despite their potential, the complex structure presents modelling challenges that are difficult to explicitly formulate and control.
View Article and Find Full Text PDFFront Robot AI
December 2022
Road infrastructure is one of the most vital assets of any country. Keeping the road infrastructure clean and unpolluted is important for ensuring road safety and reducing environmental risk. However, roadside litter picking is an extremely laborious, expensive, monotonous and hazardous task.
View Article and Find Full Text PDF