Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Acetaldehyde is an essential commodity chemical with high demand, while its conventional production by homogeneous Wacker oxidation suffers from high corrosivity, high chlorine by-products, and separation difficulties. In this work, a Pd nanoparticle-loaded ZnO (Pd-ZnO) photocatalyst is developed for the selective oxidation of ethylene to acetaldehyde. The ZnO substrate provides hydroxyl radicals (•OH) from water oxidation, and the Pd active sites allow to promote the dehydrogenation of adsorbed symmetrical ethylene to form asymmetrical vinyl specie (CH═CH) with negatively charged carbon, which can be further attacked by •OH to vinyl alcohol (CHOH) and finally undergo isomerization to produce acetaldehyde products. The Pd-ZnO photocatalyst exhibits a high CH-to-acetaldehyde yield of >3500 µmol g h with 60% selectivity at ambient temperature and pressure under illumination without the use of sacrificial agents, featuring one of the highest performances in both photocatalytic and electrocatalytic conversion. This work suggests an attractive opportunity for the photocatalytic production of acetaldehyde from ethylene.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202503710 | DOI Listing |