Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Large-scale cultivation of cyanobacteria is often limited by the high cost of synthetic culture medium and the environmental impact of nutrient consumption. Cheese whey, a major agro-industrial waste product, is rich in organic and inorganic nutrients, making it a promising low-cost alternative for microbial growth while addressing waste bioremediation. This study investigates the growth performance and the biochemical composition of four different cyanobacterial species ( sp., sp., and ), cultivated in cheese whey (CW). Pretreated CW was used at 20% and 100% / concentrations. All species grew satisfactorily in both concentrations, reaching biomass above 4 g L (in 100% / CW) and 2 g L (in 20% / CW). The highest μ value (0.28 ± 0.02 d) was presented by sp. grown in 20% CW. Waste bioremediation of both 20 and 100% / CW demonstrated effective nutrient removal, with COD removal exceeding 50% for most species, while total nitrogen (TN) and total phosphorus (TP) removals reached up to 33% and 32%, respectively. Biochemical composition analysis revealed high carbohydrate and protein content, while lipid content remained below 15% in all cases. Interestingly, accumulated 11% / polyhydroxyalkanoates (PHAs) during the last day of cultivation in 20% / CW. These findings highlight the potential of as a valuable candidate for integration into bioprocesses aimed at sustainable bioplastic production. Its ability to synthesize PHAs from agro-industrial waste not only enhances the economic viability of the process but also aligns with circular economy principles. This study is a primary step towards establishing a biorefinery concept for the cultivation of cyanobacterial species in cheese whey-based wastewater streams.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12113660 | PMC |
http://dx.doi.org/10.3390/microorganisms13051157 | DOI Listing |