A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Multi-Objective Toughness Optimization of Epoxy Resin for Steel Bridge Deck Pavement Based on Crosslink Density Regulation. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Epoxy resins (ERs) are esteemed for their mechanical robustness and adhesive qualities, particularly in steel bridge deck applications. Nonetheless, their intrinsic brittleness limits broader utility. This study addresses this limitation by modulating ER crosslink density through adjustments in curing agent concentration, incorporation of hyperbranched polymers (HBPs), and optimization of curing conditions. Employing a multi-objective optimization strategy, this research aims to enhance toughness while minimizing strength degradation. Non-isothermal curing kinetics, realized using the differential scanning calorimetry (DSC) method, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), tensile testing, and thermogravimetric analysis (TGA), were employed to investigate the effects of curing agent and HBP content on the curing reaction, mechanical properties, and thermal stability, respectively. Response surface methodology facilitated comprehensive optimization. Findings indicate that both curing agent and HBP contents significantly influence curing dynamics and mechanical performance. Curing agent content below 40% or above 50% can induce side reactions, adversely affecting properties. While a curing agent content exceeding 45% or an HBP content exceeding 5% improves the toughness of ER, these increases concurrently reduce mechanical strength and thermal stability. The study identifies an optimal formulation comprising 45.21% curing agent, a curing temperature of 60.45 °C, and 5.77% HBP content.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12114618PMC
http://dx.doi.org/10.3390/polym17101422DOI Listing

Publication Analysis

Top Keywords

curing agent
24
hbp content
12
curing
11
steel bridge
8
bridge deck
8
crosslink density
8
agent hbp
8
thermal stability
8
agent content
8
content exceeding
8

Similar Publications