Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Epilepsy is a prevalent neurological condition, having a wide range of phenotypic traits, which complicate the diagnosis process. Next-generation sequencing (NGS) techniques have improved the diagnostics for unexplained epilepsies. Our goal was to evaluate the utility and impact of genetic testing in the clinical management of pediatric epilepsies. In addition, we aimed to identify clinical factors that could predict a genetic diagnosis. This was a retrospective study of 140 pediatric patients with epilepsy with or without other neurological conditions that underwent NGS testing (multigene panel, WES = whole exome sequencing and/or WGS = whole genome sequencing). A comparison between genetically diagnosed versus non-diagnosed children was performed based on different clinical features. Univariate and multivariate logistic regression analysis was performed to identify clinical predictors of a positive genetic diagnosis. Most children underwent gene panel testing, while 30 had exome sequencing and 3 had genome sequencing. The overall diagnostic yield of genetic testing was 28.6% (40/140) for more than 28 genes. The most frequently identified genes with causative variants were (n = 4), (n = 3), (n = 3), (n = 2), (n = 2), (n = 2), and (n = 2). Significant predictors from the logistic regression model were a younger age at seizure onset ( = 0.015), the presence of intellectual disability ( = 0.021), and facial dysmorphism ( = 0.049). A genetic diagnosis led to an impact on the choice or duration of medication in 85% (34/40) of the children, as well as the recommendation for screening of comorbidities or multidisciplinary referrals in 45% (18/40) of children. Epilepsy is a highly heterogeneous disorder, both genetically and phenotypically. Less than one third of patients had a genetic diagnosis identified using panels, exomes, and/or genomes. An early onset and syndromic features (including global developmental delay) were more likely to receive a diagnosis and benefit from optimized disease management.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12112176PMC
http://dx.doi.org/10.3390/ijms26104843DOI Listing

Publication Analysis

Top Keywords

genetic diagnosis
16
genetic testing
12
genome sequencing
12
impact genetic
8
panels exomes
8
children epilepsy
8
identify clinical
8
exome sequencing
8
logistic regression
8
sequencing
6

Similar Publications

Background: Electronic health records (EHRs) are a cornerstone of modern health care delivery, but their current configuration often fragments information across systems, impeding timely and effective clinical decision-making. In gynecological oncology, where care involves complex, multidisciplinary coordination, these limitations can significantly impact the quality and efficiency of patient management. Few studies have examined how EHR systems support clinical decision-making from the perspective of end users.

View Article and Find Full Text PDF

Background: Pheochromocytomas and paragangliomas (PPGLs) are rare catecholamine-secreting neuroendocrine tumors originating from the embryonic neural crest. Approximately 30% of PPGLs are hereditary and are frequently associated with genetic syndromes, including neurofibromatosis type 1 (NF1). Composite PPGLs, which include components of both PPGLs and related tumors such as ganglioneuromas, are extremely rare in NF1 patients.

View Article and Find Full Text PDF

Objectives: Complement factor I (CFI) deficiency is a rare condition that can present with fulminant relapsing CNS autoinflammation. In this report, we highlight the utility of genetic testing in unexplained CNS autoinflammation.

Methods: This case report describes a young adult with partial CFI deficiency, presenting with acute hemorrhagic leukoencephalitis and longitudinally extensive transverse myelitis.

View Article and Find Full Text PDF