Investigating the Associations Between Hmga2 Overexpression, R-Loop Reduction, and Bone Loss in Aging Mice.

Medicina (Kaunas)

Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, No. 4 Tiantanxili, Dongcheng District, Beijing 100050, China.

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aging-related bone loss still lacks interventions. As bone marrow-derived mesenchymal stem cells (BMSCs) undergo aging, R-loop-induced DNA replication stress impairs the osteogenic ability of BMSCs. High-mobility group A-2 (Hmga2) acts as a DNA-binding protein, and the understanding of its underlying mechanisms is crucial for developing effective preventive and therapeutic strategies. Aging mice were used as the experimental model, and mouse BMSCs were isolated from their femurs. Hmga2 was achieved through specific gene delivery methods. R-loop formation was detected using dot blotting, chromatin immunoprecipitation (ChIP), and DNA-RNA immunoprecipitation (DRIP) assays. Osteogenic differentiation was evaluated. R-loops were highly accumulated in aging BMSCs. Notably, the key regulator Hmga2 reversed the accumulation of R-loops in aging BMSCs. Hmga2 overexpression significantly decreased the senescence and improved the osteogenic differentiation of aging mBMSCs. Mechanistically, R-loop-forming sequence (RLFS) regions were confirmed in key osteogenesis-related genes, including runt-related transcription factor 2 (Runx2). Hmga2 bound to the RLFS region of Runx2 and promoted its expression by reducing the R-loop level. More, Hmga2 treatment delivered via the AAV system effectively decreased bone loss in aging mice and increased the serum bone turnover biomarkers and collagen remodeling. Our study demonstrates that Hmga2 acts as an activator of aging BMSCs, significantly promoting their osteogenic ability by eliminating the aging-induced DNA replication stress caused by R-loops. Our findings provide new insights into the mechanisms of aging-related bone loss, suggesting that Hmga2 may be a new strategy for alleviating the bone loss phenotype in aging individuals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12113323PMC
http://dx.doi.org/10.3390/medicina61050820DOI Listing

Publication Analysis

Top Keywords

bone loss
20
aging mice
12
aging bmscs
12
hmga2
9
aging
9
hmga2 overexpression
8
loss aging
8
aging-related bone
8
dna replication
8
replication stress
8

Similar Publications

NAD Metabolism Regulates Proliferation of Macrophages in Atherosclerosis.

Arterioscler Thromb Vasc Biol

September 2025

Department of Medicine/Division of Cardiology, University of California Los Angeles. (S.S., C.R.S., L.F., M.P., C.P., Z.Z., J.J.M., R.C.D., D.S., A.J.L.).

Background: In genetic studies with the Hybrid Mouse Diversity Panel, we previously identified a chromosome 9 locus for atherosclerosis. We now identify NNMT (nicotinamide -methyltransferase), an enzyme that degrades nicotinamide, as the causal gene in the locus and show that the underlying mechanism involves salvage of nicotinamide to nicotinamide adenine dinucleotide (NAD).

Methods: Gain/loss of function studies in macrophages were performed to examine the role of NAD levels in macrophage proliferation and apoptosis in atherosclerosis.

View Article and Find Full Text PDF

This systematic review and meta-analysis aimed to evaluate the long-term clinical outcomes of regenerative procedures compared with access flap surgery for the treatment of intrabony defects, with a minimum follow-up period of 5 years. A systematic review protocol following PRISMA guidelines was conducted. Both electronic and manual searches were conducted to identify randomized clinical trials (RCTs) on regenerative treatment of deep intrabony defects (≥3 mm) with a follow-up of at least 5 years.

View Article and Find Full Text PDF

Osteoporotic hip fractures are a considerable cause of pain and disability particularly among the elderly. Osteoporosis causes loss of bone stability, which in turn leads to an increased risk of fractures especially in metaphyseal bone. Moreover, the body's capacity for healing is diminished, resulting in prolonged recovery times following these fractures.

View Article and Find Full Text PDF

Objective: Progesterone (PG) and its target, progesterone receptor (PGR), are important regulators in inflammatory diseases. This study aimed to investigate the specific role of PG in periodontitis and to elucidate the underlying mechanisms involving PGR.

Methods: Women with periodontitis, including 250 with PG deficiency, 250 with PG supplementation, and 245 controls (normal PG) were enrolled.

View Article and Find Full Text PDF

Gaucher's disease (GD) is the most common lysosomal storage disorder inherited in an autosomal recessive pattern. It occurs due to a deficiency of the enzyme glucocerebrosidase owing to a mutation in the acid-β-glucosidase () gene resulting in accumulation of glucocerebrosides in lysosomes of cells. It presents with abdominal distension, hepatosplenomegaly, developmental delay, pancytopenia, neurological manifestations and bone diseases.

View Article and Find Full Text PDF