A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Nonlinear Hysteresis Parameter Identification of Piezoelectric Actuators Using an Improved Gray Wolf Optimizer with Logistic Chaos Initialization and a Levy Flight Variant. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Piezoelectric tilt mirrors are crucial components of precision optical systems. However, the intrinsic hysteretic nonlinearity of the piezoelectric actuator severely restricts the control accuracy of these mirrors and the overall performance of the optical system. This paper proposes an improved Gray Wolf Optimization (GWO) algorithm for high-accuracy identification of hysteresis model parameters based on the Bouc-Wen (BW) differential equation. The proposed algorithm accurately describes the intrinsic hysteretic nonlinear behavior of piezoelectric tilt mirrors. A logistic chaotic mapping method is introduced for population initialization, while a nonlinear convergence factor and a Levy flight strategy are incorporated to enhance global search capabilities during the later stages of optimization. These modifications enable the algorithm to effectively identify BW model parameters for piezoelectric nonlinear systems. Compared to conventional Particle Swarm Optimization (PSO) and standard GWO, the improved algorithm demonstrates faster convergence, higher accuracy, and superior ergodicity, making it a promising tool for solving optimization problems, such as parameter identification in piezoelectric hysteresis systems. This work provides a robust approach for improving the precision and reliability of piezoelectric-driven optical systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12113591PMC
http://dx.doi.org/10.3390/mi16050492DOI Listing

Publication Analysis

Top Keywords

parameter identification
8
identification piezoelectric
8
improved gray
8
gray wolf
8
levy flight
8
piezoelectric tilt
8
tilt mirrors
8
optical systems
8
intrinsic hysteretic
8
model parameters
8

Similar Publications