Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Tension-free hernioplasty has effectively reduced postoperative recurrence and mitigated complications by employing polymer patches. However, clinically used polymer patches often fall short in terms of the anti-deformation, anti-adhesion, and tissue integration functions, which can result in visceral adhesions and foreign body reactions after implantation. In this study, a Janus three-layer composite patch was developed for abdominal wall defect repair using a combination of 3D printing, electrospraying, and electrospinning technologies. On the visceral side, a dense electrospun polyvinyl alcohol/sodium hyaluronate (PVA/HA) scaffold was fabricated to inhibit cell adhesion. The middle layer, composed of polycaprolactone (PCL), provided mechanical support. On the muscle-facing side, a loose and porous electrospun nanofiber scaffold was created through electrospraying and electrospinning, promoting cell adhesion and migration to facilitate tissue regeneration. Mechanical testing demonstrated that the composite patch possessed excellent tensile strength (23.58 N/cm), surpassing the clinical standard (16 N/cm). Both in vitro and in vivo evaluations confirmed the patch's outstanding biocompatibility. Compared with the control PCL patch, the Janus composite patch significantly reduced the visceral adhesion and enhanced the tissue repair in animal models. Collectively, this Janus composite patch integrated anti-deformation, anti-adhesion, and tissue-regenerative properties, providing a promising solution for effective abdominal wall defect repair.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12109248 | PMC |
http://dx.doi.org/10.3390/bioengineering12050522 | DOI Listing |