98%
921
2 minutes
20
The term "big data analytics (BDA)" defines the computational techniques to study complex datasets that are too large for common data processing software, encompassing techniques such as data mining (DM), machine learning (ML), and predictive analytics (PA) to find patterns, correlations, and insights in massive datasets. Cardiovascular diseases (CVDs) are attributed to a combination of various risk factors, including sedentary lifestyle, obesity, diabetes, dyslipidaemia, and hypertension. We searched PubMed and published research using the Google and Cochrane search engines to evaluate existing models of BDA that have been used for CVD prediction models. We critically analyse the pitfalls and advantages of various BDA models using artificial intelligence (AI), machine learning (ML), and artificial neural networks (ANN). BDA with the integration of wide-ranging data sources, such as genomic, proteomic, and lifestyle data, could help understand the complex biological mechanisms behind CVD, including risk stratification in risk-exposed individuals. Predictive modelling is proposed to help in the development of personalized medicines, particularly in pharmacogenomics; understanding genetic variation might help to guide drug selection and dosing, with the consequent improvement in patient outcomes. To summarize, incorporating BDA into cardiovascular research and treatment represents a paradigm shift in our approach to CVD prevention, diagnosis, and management. By leveraging the power of big data, researchers and clinicians can gain deeper insights into disease mechanisms, improve patient care, and ultimately reduce the burden of cardiovascular disease on individuals and healthcare systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12108848 | PMC |
http://dx.doi.org/10.3390/bioengineering12050463 | DOI Listing |
Nat Aging
September 2025
Aging Biomarker Consortium (ABC), Beijing, China.
The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.
View Article and Find Full Text PDFChild Abuse Negl
September 2025
Population Child Health (PCH) Research Group, School of Clinical Medicine, UNSW Medicine & Health, Bright Alliance, High Street, Randwick, New South Wales, 2031, Australia. Electronic address:
Proc Natl Acad Sci U S A
September 2025
State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug De
Proliferative retinopathy is a leading cause of irreversible blindness in humans; however, the molecular mechanisms behind the immune cell-mediated retinal angiogenesis remain poorly elucidated. Here, using single-cell RNA sequencing in an oxygen-induced retinopathy (OIR) model, we identified an enrichment of sorting nexin (SNX)-related pathways, with SNX3, a member of the SNX family that is involved in endosomal sorting and trafficking, being significantly upregulated in the myeloid cell subpopulations of OIR retinas. Immunostaining showed that SNX3 expression is markedly increased in the retinal microglia/macrophages of mice with OIR, which is mainly located within and around the neovascular tufts.
View Article and Find Full Text PDFJ Cancer Res Clin Oncol
September 2025
Department of Thoracic Surgery, Med+X Center for Informatics, West China Hospital, Sichuan University, Chengdu, China.
Anesthesiology
October 2025
Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.
Background: Anesthetic exposure in young children raises concerns about neurodevelopmental safety, with preclinical evidence suggesting potential neurotoxicity of volatile anesthetics. This study aimed to assess whether the combination of dexmedetomidine and remifentanil, by reducing sevoflurane exposure, has any differential effect on neurodevelopmental outcomes in young children compared with sevoflurane alone.
Methods: This study was a prospective, double-blind, randomized clinical trial including children younger than 2 yr undergoing nonstaged, nonrepetitive surgeries.