Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
In forensic practice, the estimation of postmortem interval has been a persistent challenge. Recently, there has been an increasing utilization of metabolomics techniques combined with machine learning methods for postmortem interval estimation. When examining metabolite changes from a global perspective, rather than relying on specific substance changes, estimating postmortem interval through machine learning methods is more precise and entails fewer errors. Prior studies have investigated the use of metabolomics to estimate postmortem interval. Nevertheless, most of them focused on analyzing the metabolomic properties of a single organ or biofluid concerning a specific temperature. In this study, we employ the GC-MS platform to identify metabolites in the liver, kidney, and quadriceps femoris muscle of mechanically suffocated Sprague Dawley rats at various temperatures. Multivariable statistical analysis was used to determine differential compounds from the original data. The machine learning method was used to establish models for the estimation of postmortem interval under various ambient temperatures. As indicated by the results, liver, kidney, and quadriceps femoris muscle samples were screened for 24, 18, and 19 differential metabolites respectively, associated with postmortem interval under various ambient temperatures. Based on the metabolites listed above, the support vector regression models were established by utilizing single-organ and multi-organ metabolomics data for postmortem interval estimation. The multi-organ model showed a higher estimation accuracy. Also, a comprehensive generalization postmortem interval estimation model was established with multi-organ metabolomics data and temperature variables, which can be used for the postmortem interval estimation within the temperature range of 5-35℃. These results demonstrate that a multi-organ model utilizing metabolomics techniques can accurately estimate the postmortem interval under various ambient temperatures. Meanwhile, this research establishes a strong foundation for the practical application of metabolomics in postmortem interval estimation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00414-025-03523-0 | DOI Listing |