98%
921
2 minutes
20
The rapidly evolving field of functional yarns has garnered substantial research attention due to their exceptional potential in enabling next-generation electronic textiles for wearable health monitoring, human-machine interfaces, and soft robotics. Despite notable advancements, the development of yarn-based strain sensors that simultaneously achieve high flexibility, stretchability, superior comfort, extended operational stability, and exceptional electrical performance remains a critical challenge, hindered by material limitations and structural design constraints. Here, we present a bioinspired, hierarchically structured core-sheath yarn sensor (CSSYS) engineered through an efficient dip-coating process, which synergistically integrates the two-dimensional conductive MXene nanosheets and one-dimensional silver nanowires (AgNWs). Furthermore, the sensor is encapsulated using a yarn-based protective layer, which not only preserves its inherent flexibility and wearability but also effectively mitigates oxidative degradation of the sensitive materials, thereby significantly enhancing long-term durability. Drawing inspiration from the natural architecture of plant stems-where the inner core provides structural integrity while a flexible outer sheath ensures adaptive protection-the CSSYS exhibits outstanding mechanical and electrical performance, including an ultralow strain detection limit (0.05%), an ultrahigh gauge factor (up to 744.45), rapid response kinetics (80 ms), a broad sensing range (0-230% strain), and exceptional cyclic stability (>20,000 cycles). These remarkable characteristics enable the CSSYS to precisely capture a broad spectrum of physiological signals, ranging from subtle arterial pulsations and respiratory rhythms to large-scale joint movements, demonstrating its immense potential for next-generation wearable health monitoring systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12109268 | PMC |
http://dx.doi.org/10.3390/biomimetics10050304 | DOI Listing |
Probiotics Antimicrob Proteins
September 2025
Key Laboratory of the Ministry of Education for Wildlife and Plant Resources Conservation in Southwest China, College of Life Sciences, China West Normal University, Nanchong, Sichuan, China.
Enterotoxigenic Escherichia coli (ETEC) is a prevalent intestinal pathogen that significantly impacts both human and animal health. G83, isolated from giant panda feces, has demonstrated notable probiotic properties. In this study, C57BL/6 J mice were randomly divided into Control, ETEC, and G83 groups.
View Article and Find Full Text PDFJ Fluoresc
September 2025
School of Intelligent Manufacturing, Huzhou College, Huzhou, 313000, P.R. China.
The antibiotic contamination in aquatic environments, particularly in aquaculture systems, poses substantial risks to ecological balance and human health. To address this issue, we engineered a novel ratiometric fluorescent probe utilizing dual-emission carbon dots (D-CDs) synthesized from sustainable biomass carrot and nitrogen-rich precursors (melamine and o-phenylenediamine) through an efficient one-pot hydrothermal approach. The D-CDs exhibited dual emission peaks at 425nm and 540 nm under 370nm excitation.
View Article and Find Full Text PDFHepatol Int
September 2025
Department of Biomedical Informatics and Data Science, Yale School of Medicine, PO Box 208009, New Haven, CT, 06520-8009, USA.
Nanomicro Lett
September 2025
Nanomaterials & System Lab, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, Republic of Korea.
Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring, clinical diagnosis, and robotic applications. Nevertheless, it remains a critical challenge to simultaneously achieve desirable mechanical and electrical performance along with biocompatibility, adhesion, self-healing, and environmental robustness with excellent sensing metrics. Herein, we report a multifunctional, anti-freezing, self-adhesive, and self-healable organogel pressure sensor composed of cobalt nanoparticle encapsulated nitrogen-doped carbon nanotubes (CoN CNT) embedded in a polyvinyl alcohol-gelatin (PVA/GLE) matrix.
View Article and Find Full Text PDFJ Cancer Res Clin Oncol
September 2025
Institute for Community Medicine, Section Epidemiology of Health Care and Community Health, University Medicine Greifswald, Greifswald, Germany.
Purpose: The German sector-based healthcare system poses a major challenge to continuous patient monitoring and long-term follow-up, both essential for generating high-quality, longitudinal real-world data. The national Network for Genomic Medicine (nNGM) bridges the inpatient and outpatient care sectors to provide comprehensive molecular diagnostics and personalized treatment for non-small cell lung cancer (NSCLC) patients in Germany. Building on the established nNGM infrastructure, the DigiNet study aims to evaluate the impact of digitally integrated, personalized care on overall survival (OS) and the optimization of treatment pathways, compared to routine care.
View Article and Find Full Text PDF