Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In pursuit of meeting the ever-rising demand for cancer therapies, cross-presentation-based glyconanovaccines (GNVs) targeting C-type lectin receptors (CLRs) on DCs have shown significant potential as cutting-edge cancer immunotherapy. GNVs are an attractive approach to induce anti-cancer cytotoxic T lymphocyte responses. Despite immune checkpoints (ICs) being well established and an obstacle to the success of GNVs, glycan-lectin circuits are emerging as unique checkpoints due to their immunomodulatory functions. Given the role of aberrant tumor glycosylation in promoting immune evasion, mitigating these effects is crucial for the efficacy of GNVs. Lectins, such as siglecs and galectins, are detrimental to the tumor immune landscape as they promote an immunosuppressive TME. From this perspective, this review aims to explore glycan-lectin ICs and their influence on the efficacy of GNVs. We aim to discuss various ICs in the TME followed by drawbacks of immune checkpoint inhibitors (ICIs). We will also emphasize the altered glycosylation profile of tumors, addressing their immunosuppressive nature along with ways in which CLRs, siglecs, and galectins contribute to immune evasion and cancer progression. Considering the resistance towards ICIs, current and prospective approaches for targeting glycan-lectin circuits and future prospects of these endeavors in harnessing the full potential of GNVs will also be highlighted.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4bm01732cDOI Listing

Publication Analysis

Top Keywords

glycan-lectin circuits
8
immune evasion
8
efficacy gnvs
8
siglecs galectins
8
gnvs
6
immune
5
overcoming novel
4
glycan-lectin
4
novel glycan-lectin
4
glycan-lectin checkpoints
4

Similar Publications

In pursuit of meeting the ever-rising demand for cancer therapies, cross-presentation-based glyconanovaccines (GNVs) targeting C-type lectin receptors (CLRs) on DCs have shown significant potential as cutting-edge cancer immunotherapy. GNVs are an attractive approach to induce anti-cancer cytotoxic T lymphocyte responses. Despite immune checkpoints (ICs) being well established and an obstacle to the success of GNVs, glycan-lectin circuits are emerging as unique checkpoints due to their immunomodulatory functions.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is a common malignant tumour and a serious global health issue. Glycosylation, a type of posttranslational modification, has been extensively studied in relation to cancer growth and metastasis. Aberrant glycosylation alters how the immune system in the microenvironment perceives the tumour and drives immune suppression through glycan-binding receptors.

View Article and Find Full Text PDF

Glycans play a major role in biological cell-cell recognition and signal transduction but have found limited application in biosensors due to glycan/lectin promiscuity; multiple proteins are capable of binding to the same native glycan. Here, site-specific fluorination is used to introduce protein-glycan selectivity, and this is coupled with an electrochemical detection method to generate a novel biosensor platform. 3F-lacto--biose glycofluoroform is installed onto polymer tethers, which are subsequently immobilised onto gold screen printed electrodes, providing a non-fouling surface.

View Article and Find Full Text PDF

Glycans in melanoma: Drivers of tumour progression but sweet targets to exploit for immunotherapy.

Immunology

September 2024

Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France.

Aberrant glycosylation recently emerged as an unmissable hallmark of cancer progression in many cancers. In melanoma, there is growing evidence that the tumour 'glycocode' plays a major role in promoting cell proliferation, invasion, migration, but also dictates the nature of the immune infiltrate, which strongly affects immune cell function, and clinical outcome. Aberrant glycosylation patterns dismantle anti-tumour defence through interactions with lectins on immune cells, which are crucial to shape anti-tumour immunity but also to trigger immune evasion.

View Article and Find Full Text PDF

Label-free impedimetric detection of glycan-lectin interactions.

Anal Chem

September 2007

Center for Bioelectronics and Biosensors, The Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 82287-6001, USA.

A compact biosensor for a label-free, rapid (<80 s) detection of glycan-lectin interactions using ac impedance measurements was developed for the first time. A galactose-binding peanut agglutinin (PNA) and sialic acid-binding Sambucus nigra agglutinin (SNA) were covalently surface-immobilized on the layered Cu/Ni/Au printed circuit board (PCB) electrodes. Samples of artificial and natural glycoconjugates consisting of (1) gold glyconanoparticles encapsulated with approximately 90-100 copies of TF-antigen disaccharide Galalpha1-3GalNAc (TF-AuNP), (2) asialofetuin (ASF) containing both LacNAc (Galbeta1-4GlcNAc) and TF-antigen, and (3) fetuin (FET), the sialylated glycoform of ASF.

View Article and Find Full Text PDF