Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: Osteoarthritis (OA) stands as a prevalent degenerative disease worldwide. Despite the demonstrated therapeutic efficacy of the Bushen Huoxue formula (BSHXF) in treating OA, its underlying mechanism remains elusive. Network pharmacology is commonly employed for investigating drug-disease associations and processes. In this study, we employed network pharmacology alongside in vitro and in vivo experiments to elucidate the molecular mechanism by which BSHXF treats OA.

Methods: Based on the TCMSP database, active components of BSHXF were screened, and OA-related targets were retrieved from GeneCard and DisGeNET to construct a "component-target-pathway" network using Cytoscape. Core target functions and pathways (KEGG/GO) were analyzed through STRING and Metascape, while component-target binding affinity was validated via Autodock. For in vitro experiments, an IL-1β-induced chondrocyte inflammation model was established, and key protein expression was detected by Western blot and immunofluorescence. For in vivo experiments, an OA model was created by medial meniscectomy of the knee joint in rats, and therapeutic efficacy was assessed using histological staining and micro-CT.

Results: This study screened 89 active ingredients of BSHXF and identified 189 common targets. Network pharmacological analysis revealed luteolin and tanshinone IIA as the most crucial active ingredients in treating OA with BSHXF. The potential mechanisms of action for BSHXF in OA treatment involve inflammation inhibition, immune function regulation, and resistance to oxidative stress, with a significant regulatory role played by the IL-17 signaling pathway. Molecular docking results demonstrated luteolin's strong binding affinity to key targets such as B-cell lymphoma 2 (Bcl-2), Matrix metalloproteinase-9 (Mmp-9), and IL-6.In vitro experiments demonstrated that BSHXF significantly suppressed IL-1β-induced inflammatory responses in chondrocytes, downregulating IL-17A expression ( < 0.05), reducing the expression of MMP-9 ( < 0.05) and IL-6 ( < 0.05), and inhibiting apoptosis. Additionally, in vivo experiments revealed that the high-dose BSHXF group (150 mg/kg) markedly alleviated cartilage damage in OA rats, with OARSI scores significantly decreased compared to the model group ( < 0.05). Micro-CT analysis showed that BSHXF inhibited osteophyte formation and ameliorated OA pathological conditions.

Conclusion: BSHXF has the potential to alleviate OA by suppressing inflammation, inhibiting cartilage apoptosis and hindering extracellular matrix degradation via the IL-17 signaling pathway. Our study elucidated the molecular mechanisms underlying the therapeutic effects of BSHXF on OA, thus highlighting its further research implications as a novel drug candidate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12104672PMC
http://dx.doi.org/10.2147/JIR.S506716DOI Listing

Publication Analysis

Top Keywords

active ingredients
12
signaling pathway
12
vivo experiments
12
bshxf
11
bushen huoxue
8
huoxue formula
8
therapeutic efficacy
8
network pharmacology
8
binding affinity
8
vitro experiments
8

Similar Publications

There is a concern on the safety of cosmetic ingredients and their endocrine-disrupting (ED) potential. Frequent use as well as the use of a diverse range of cosmetics pose a concern for a potential health risk via aggregate exposure to endocrine disrupting chemicals (EDCs). In this study, a list of ingredients available in cosmetic products that were recently introduced to the Dutch market was retrieved from the commercially accessible Mintel database and screened for the presence of EDCs.

View Article and Find Full Text PDF

To evaluate the quality of pomegranate peels from different cultivars, pomegranate peel samples from 47 cultivars were compared and classified based on fingerprints and chemical components obtained using HPLC-PDA-MS/MS combined with chemometric methods. Three pattern recognition methods, namely, hierarchical cluster analysis, principal component analysis, and partial least square-discriminant analysis, were used to establish classification models. Results showed that the contents of 10 components from pomegranate peel were determined.

View Article and Find Full Text PDF

Chrysotobibenzyl, a bioactive ingredient from Dendrobium chrysotoxum, exhibits potent anti-tumor activity. However, its metabolic profiles remain unelucidated. This study aimed to disclose the metabolic fates of chrysotobibenzyl using human liver fractions.

View Article and Find Full Text PDF

The development of analytical techniques applicable to powdered pharmaceutical co-crystals, including those containing excipients, represents a comprehensive strategy for quality control in both drug development and regulatory settings. This study investigates the structural characterization of indomethacin-nicotinamide co-crystals using a combination of microcrystal electron diffraction (microED), solid-state NMR (SSNMR), Raman spectroscopy, and powder X-ray diffraction (PXRD). MicroED analysis revealed the crystal structure of the co-crystal, while SSNMR measurements provided insights into the molecular interactions within the structure.

View Article and Find Full Text PDF

Microencapsulation alters pyraclostrobin degradation and reshapes soil microbial communities compared to conventional formulations.

J Adv Res

September 2025

State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China. Electronic address: tangtao@za

Introduction: Microencapsulated pyraclostrobin (PYR-CS) has gained widespread adoption in agriculture owing to its extended efficacy and reduced risks for non-target organisms. However, knowledge remains limited regarding its degradation in soil and effects on soil microorganisms.

Objectives: This study investigates the hypothesis that microencapsulation alters pyraclostrobin degradation and reshapes soil microbial communities compared with conventional formulations, including emulsifiable concentrate (PYR-EC) and technical material (PYR-TC).

View Article and Find Full Text PDF