Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Saline lands pose significant environmental and agricultural challenges due to high soil salinity, which disrupts water uptake and ionic balances, limiting conventional crop productivity. Yet, certain endemic plants thrive under these conditions and may offer untapped bioactive compounds. This study proposes a novel platform that integrates species distribution modeling (SDM) and advanced metabolomics to screen for bioactive secondary metabolites, using , a rare native species, as a case study. An ensemble SDM model incorporating environmental and soil parameters identified salinity as a critical factor influencing the species' distribution. Leaf samples were collected from naturally growing trees at both saline (SS) and non-saline (NS) sites. LC-QTOF metabolomic analysis annotated a total of 1106 metabolites across the leaf samples, with 175 found to be significantly different between the groups. Among them, 108 metabolites exhibited higher abundance in the SS group. Additionally, antioxidant assays including DPPH, FRAP, and total phenolic content tests, were conducted. Data were further analyzed using O-PLSR models to identify key metabolites most relevant to antioxidant properties. The results indicated that afzelin was the key metabolite responsible for the antioxidant properties of , with significantly higher levels in SS compared to NS samples ( < 0.05), as determined by peak area. By leveraging this multidisciplinary approach, we propose a framework to support both bioactive compound discovery and saline land reclamation, offering potential environmental and pharmaceutical benefits. This integrated platform may support pharmaceutical research, particularly in drug discovery efforts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12104716PMC
http://dx.doi.org/10.1016/j.csbj.2025.04.035DOI Listing

Publication Analysis

Top Keywords

novel platform
8
leaf samples
8
antioxidant properties
8
integrating spatial
4
spatial mapping
4
mapping metabolomics
4
metabolomics novel
4
platform bioactive
4
bioactive compound
4
compound discovery
4

Similar Publications

The rate of sudden unexpected death in epilepsy (SUDEP) is ~1 per 1000 patients each year. Terminal events reportedly involve repeated and prolonged apnea, suggesting a failure to autoresuscitate. To better understand the mechanisms and identify novel therapeutics, standardized tests to screen for autoresuscitation efficacy are needed in preclinical SUDEP.

View Article and Find Full Text PDF

Focus on 2004 to 2024The rediscovery of natural products (NPs) as a critical source of new therapeutics has been greatly advanced by the development of heterologous expression platforms for biosynthetic gene clusters (BGCs). Among these, species have emerged as the most widely used and versatile chassis for expressing complex BGCs from diverse microbial origins. In this review, we provide a comprehensive analysis of over 450 peer-reviewed studies published between 2004 and 2024 that describe the heterologous expression of BGCs in hosts.

View Article and Find Full Text PDF

Aims: Non-pharmacological therapies for acute decompensated heart failure (HF) and cardiogenic shock have evolved considerably in recent decades. Short-term mechanical circulatory support (MCS) devices can be used as circulatory backup. While nearly all available devices use continuous flow, evidence indicates that pulsatile flow can be more effective.

View Article and Find Full Text PDF

Background: ICD-11's digital architecture and granularity distinguish it from previous revisions and expand its applicability beyond mortality statistics and public health. The official ICD-11 version is updated annually. However, a separate online Maintenance Platform is continuously updated and hosts the Proposal Platform: a novel online tool that enables interested parties from all over the world to contribute to ICD-11 content.

View Article and Find Full Text PDF

Photoremovable protecting groups (PRPGs) enable precise spatiotemporal control over molecular release and functional activation. Recent advances have introduced wavelength-selective systems for sequential deprotection, broadening applications in drug delivery, material synthesis, and photopolymerization. In parallel, PRPGs play a crucial role in photobase generators (PBGs) and photoacid generators (PAGs), enabling oxygen-tolerant, spatially controlled polymerization and depolymerization through light-induced base and acid release.

View Article and Find Full Text PDF