Chitosan-based Nano/Biomaterials in Bone Tissue Engineering and Regenerative Medicine: Recent Progress and Advances.

Curr Org Synth

Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Monash Institute of Medical Research, Clayton, VIC 3168, Australia.

Published: May 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The biopolymer chitosan, which is derived from chitin, has shown great promise for tissue regeneration and regulated drug delivery. Its broad-spectrum antibacterial action, low toxicity, biocompatibility, and many other attributes make it appealing for use in biomedical applications. Crucially, chitosan may be synthesized into a range of forms that can be customized to provide desired results, such as hydrogels, membranes, scaffolds, and nanoparticles. Hydrogels that are biocompatible and self-healing are innovative soft materials with considerable potential for use in biomedical applications. Hydrogels that self-heal using chitosan, which are mostly made by dynamic imine linkages, have gained a lot of interest because of their great biocompatibility, moderate preparation requirements, and capacity to mend themselves in a physiological setting. In this study, a summary of the applications of chitosan-based self-healing hydrogels in bone, cartilage, and tooth tissue regeneration and drug delivery is provided. Lastly, we have mentioned the difficulties and potential outcomes for the biomedical field's creation of hydrogels based on chitosan that can mend themselves.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0115701794307242240612075648DOI Listing

Publication Analysis

Top Keywords

tissue regeneration
8
drug delivery
8
biomedical applications
8
hydrogels
5
chitosan-based nano/biomaterials
4
nano/biomaterials bone
4
bone tissue
4
tissue engineering
4
engineering regenerative
4
regenerative medicine
4

Similar Publications

Follicular unit extraction (FUE) has become a leading technique in hair transplantation, yet optimal management of the donor area remains a clinical challenge. This systematic review analyzes intraoperative and postoperative interventions applied to the donor area in FUE hair transplantation, with a focus on both clinical outcomes and the cellular and molecular mechanisms involved in tissue repair, inflammatory response, and regenerative processes. A comprehensive literature search was conducted in PubMed and EMBASE (January 2000-June 2025), identifying clinical studies that evaluated donor area treatments and reported outcomes related to healing, inflammation, infection, and patient satisfaction.

View Article and Find Full Text PDF

Purpose Of The Article: Snail mucin (SM) has garnered significant attention in dermatology, particularly for its potential in scar therapy and wound healing, due to its bioactive compounds, like allantoin, glycolic acid, and hyaluronic acid. These compounds are known to promote tissue regeneration, enhance skin hydration, and reduce scarring.

Materials And Methods: However, despite growing interest, significant gaps remain in the clinical understanding of SM's therapeutic potential, including a lack of standardised formulations and limited clinical trials.

View Article and Find Full Text PDF

Engineering a cell-free bone regeneration platform using osteogenically primed MSC-EVs and nHAp-enriched IPN hydrogels.

Regen Med

September 2025

Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis School of Biological Sciences (SSBS), Symbiosis International, Deemed University, Lavale, Pune, India.

Aims: This study aimed to enhance the osteoinductive potential of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) by integrating them into a nano-hydroxyapatite (nHAp)-enriched hydrogel scaffold for bone regeneration applications.

Materials & Methods: EVs were isolated from naïve and osteogenically primed MSCs and characterized for morphology, cargo content, and cytocompatibility. Their uptake and osteoinductive activity were assessed using MC3T3 cells within a 3D interpenetrating network (IPN) hydrogel.

View Article and Find Full Text PDF

Directional Biomimetic Scaffold-Mediated Cell Migration and Pathological Microenvironment Regulation Accelerate Diabetic Bone Defect Repair.

ACS Nano

September 2025

Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Key Laboratory of Innovation and Transformation of Advanced Medical Devices of Ministry of Industry and Information Technology, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Dev

Hyperglycemia-induced oxidative stress and inflammation critically impair diabetic bone defect repair. Here, a radially oriented microchannel scaffold (D-GSH@QZ) was developed via a directional freezing technique integrated with photo-cross-linking strategies. The scaffold was fabricated from gelatin methacryloyl, silk fibroin methacryloyl, and nanohydroxyapatite (HAp) to mimic the natural bone matrix, while incorporating quercetin-loaded ZIF-8 nanoparticles (Qu@ZIF-8) for pathological microenvironment modulation.

View Article and Find Full Text PDF

Purpose: To evaluate changes in implant stability quotient values of hydrophilic tissue-level implants over time, and to investigate the influence of local factors on variations in these values.

Methods: Fifty tapered, self-tapping, tissue-level implants with a hydrophilic surface were placed and monitored for 12 months. Implant stability quotient values were recorded at the time of insertion (T0) and monthly thereafter for 12 months.

View Article and Find Full Text PDF