A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Emerging strategies for targeting tumor-associated macrophages in glioblastoma: A focus on chemotaxis blockade. | LitMetric

Emerging strategies for targeting tumor-associated macrophages in glioblastoma: A focus on chemotaxis blockade.

Life Sci

Department of Biotechnology and Bioscience, Sejong University, Seoul, Republic of Korea. Electronic address:

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Glioblastoma (GBM) remains one of the most aggressive and treatment-resistant brain tumors, with poor prognosis for affected patients. A key player in the GBM tumor microenvironment is the tumor-associated macrophage (TAM), which promotes tumor progression, immune evasion, and therapeutic resistance. The recruitment of TAMs to the tumor site is driven by specific chemotactic signals, including CSF-1/CSF-1R, CXCR4/CXCL12, and HGF/MET pathways. This review explores the current understanding of these chemotaxis mechanisms and their role in GBM progression. It highlights the potential therapeutic benefits of targeting TAM chemotaxis pathways to disrupt TAM infiltration, reduce immunosuppression, and enhance the efficacy of conventional treatments. Additionally, we discuss the preclinical and clinical evidence surrounding key inhibitors, such as PLX3397, AMD3100, and Crizotinib, which have shown promise in reprogramming TAMs and improving treatment outcomes in GBM. While these strategies offer hope for overcoming some of the challenges of GBM therapy, the review also addresses the limitations and obstacles in clinical translation, emphasizing the need for further research and the development of combination therapies to achieve sustained therapeutic benefit.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2025.123762DOI Listing

Publication Analysis

Top Keywords

gbm
5
emerging strategies
4
strategies targeting
4
targeting tumor-associated
4
tumor-associated macrophages
4
macrophages glioblastoma
4
glioblastoma focus
4
focus chemotaxis
4
chemotaxis blockade
4
blockade glioblastoma
4

Similar Publications