A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Optimization and evaluation of an experimental subarachnoid hemorrhage model in mice. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Subarachnoid hemorrhage (SAH) occurs when blood enters the subarachnoid space, typically due to aneurysm rupture, triggering complex pathophysiological processes. A reliable animal model is crucial for simulating SAH and investigating mechanisms of brain white matter injury. SAH was induced in C57BL/6J mice using an intraluminal perforation technique. Various filaments were tested to determine the optimal one, and filament depth was carefully measured. Postoperative evaluations included monitoring body weight, blood distribution on the skull, and clot formation. Cerebral blood flow was assessed, and neurological function was evaluated using modified Garcia scores, open field tests, and gait analysis. Myelin integrity was assessed by Luxol fast blue staining, and immunofluorescence was used to examine myelin, microglia, and neuronal integrity in the cortex and striatum. Using 4 - 0 polypropylene filaments advanced to 13 ± 1 mm at a 15-20 degree, we established a stable SAH mouse model with a success rate of 91.43% and a mortality rate of 6.25%. The SAH group showed motor impairments at 48 h post-surgery, along with myelin damage in the corpus callosum and striatum, oligodendrocyte damage, and neuronal injury.Our improved intraluminal perforation technique offers a stable and standardized SAH model, providing a reliable platform for studying SAH pathophysiology and testing new therapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12104485PMC
http://dx.doi.org/10.1038/s41598-025-03016-5DOI Listing

Publication Analysis

Top Keywords

subarachnoid hemorrhage
8
intraluminal perforation
8
perforation technique
8
sah
7
optimization evaluation
4
evaluation experimental
4
experimental subarachnoid
4
model
4
hemorrhage model
4
model mice
4

Similar Publications