98%
921
2 minutes
20
Background: Accurately determining the sample size ("N") of a dataset is a key consideration for experimental design. Misidentification of sample size can lead to pseudoreplication, a process of artificially inflating the number of experimental replicates which systematically underestimates variability, overestimates effect sizes and invalidates statistical tests performed on the data. While many journals have adopted stringent requirements with regard to statistical reporting over the last decade, it remains unknown whether such efforts have had a meaningful impact on statistical rigour.
Methods: Here, we evaluated the prevalence of this type of statistical error among neuroscience studies involving animal models of Fragile-X Syndrome (FXS) and those using animal models of neurological disorders at large published between 2001 and 2024.
Results: We found that pseudoreplication was present in the majority of publication, increasing over time despite marked improvements in statistical reporting over the last decade. This trend generalised beyond the FXS literature to rodent studies of neurological disorders at large between 2012 and 2024, suggesting that pseudoreplication remains a widespread issue in the literature.
Limitations: The scope of this study was limited to rodent-model studies of neurological disorders which had the potential for being pseudoreplicated, by allowing repeat observations from individual animals. We did not consider reviews or articles whose experimental design could not allow for pseudoreplication, for example studies which reported only behavioural results, or studies which did not use inferential statistics.
Conclusions: These observations identify an urgent need for better standards in experimental design and increased vigilance for this type of error during peer review. While reporting standards have significantly improved over the past two decades, this alone has not been enough to curb the prevalence of pseudoreplication. We offer suggestions for how this can be remedied as well as quantifying the severity of this particular type of statistical error. Although the examined literature concerns a specific neuroscience-related area of research, the implications of pseudoreplication apply to all fields of empirical research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12105375 | PMC |
http://dx.doi.org/10.1186/s13229-025-00663-3 | DOI Listing |
RNA Biol
September 2025
Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Republic of Korea.
Neural stem cells (NSCs) are multipotent stem cells with self-renewal capacity, able to differentiate into all neural lineages of the central nervous system, including neurons, oligodendrocytes, and astrocytes; thus, their proliferation and differentiation are essential for embryonic neurodevelopment and adult brain homoeostasis. Dysregulation in these processes is implicated in neurological disorders, highlighting the need to elucidate how NSCs proliferate and differentiate to clarify the mechanisms of neurogenesis and uncover potential therapeutic targets. MicroRNAs (miRNAs) are small, post-transcriptional regulators of gene expression involved in many aspects of nervous system development and function.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240.
Major depressive disorder affects millions worldwide, yet current treatments require prolonged administration. In contrast, ketamine produces rapid antidepressant effects by blocking spontaneous N-Methyl-D-Aspartate (NMDA) receptor signaling, which lifts the suppression of protein synthesis and triggers homeostatic synaptic plasticity. Here, we identify a parallel signaling pathway involving metabotropic glutamate receptor 5 (mGluR5) that promotes rapid antidepressant-like effects.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Institut de Biologie de l'Ecole Normale Supérieure, Ecole Normale Supérieure, Université Paris Sciences et Lettres, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Paris 75005, France.
Excitatory glycine receptors (eGlyRs), composed of the glycine-binding NMDA receptor subunits GluN1 and GluN3A, have recently emerged as a novel neuronal signaling modality that challenges the traditional view of glycine as an inhibitory neurotransmitter. Unlike conventional GluN1/GluN2 NMDARs, the distribution and role of eGlyRs remain poorly understood. Here, we show that eGlyRs are highly enriched in the ventral hippocampus (VH) and confer distinct properties on this brain region.
View Article and Find Full Text PDFJASA Express Lett
September 2025
Department of Audiology and Speech-Language Pathology, University of North Texas, Denton, Texas 76201,
Misophonia is a condition characterized by intense negative emotional reactions to trigger sounds and related stimuli. In this study, adult listeners (N = 15) with a self-reported history of misophonia symptoms and a control group without misophonia (N = 15) completed listening judgements of recorded misophonia trigger stimuli using a standard scale. Participants also completed an established questionnaire of misophonia symptoms, the Misophonia Questionnaire (MQ).
View Article and Find Full Text PDFJAMA Netw Open
September 2025
Perelman School of Medicine, University of Pennsylvania, Philadelphia.
Importance: As obesity rates rise in the US, managing associated metabolic comorbidities presents a growing burden to the health care system. While bariatric surgery has shown promise in mitigating established metabolic conditions, no large studies have quantified the risk of developing major obesity-related comorbidities after bariatric surgery.
Objective: To identify common metabolic phenotypes for patients eligible for bariatric surgery and to estimate crude and adjusted incidence rates of additional metabolic comorbidities associated with bariatric surgery compared with weight management program (WMP) alone.