98%
921
2 minutes
20
The feasibility of engineering the sophisticated hybrid drug delivery platforms through the integration of phospholipid vesicles within a matrix of amyloid suspensions has been evaluated. Utilizing the equilibrium dialysis methodology and spectrofluorometric technique, the quantitative analysis of doxorubicin (DOX) encapsulation capacity of diverse phospholipid assemblies, amyloid suspensions, and their corresponding composite systems has been performed. Our findings revealed that the incorporation of negatively charged cardiolipin (CL) into phosphatidylcholine (PC) lipid vesicles significantly enhances DOX encapsulation and retention, while the addition of amyloid fibrils to charged liposomes has minimal impact on the drug binding. The neutral PC liposomes modified with insulin and lysozyme fibrillar suspensions exhibited improved doxorubicin encapsulation and retention compared to unmodified liposomes, thereby displaying a potential for reduced toxicity and prolonged drug action in vivo. Notably, amyloid fibrils alone were found to demonstrate the lower degree of DOX encapsulation and retention as compared to liposomes. Fluorimetric analysis suggests that the presence of insulin and lysozyme fibrils alters the microenvironment of DOX towards a more hydrophobic which is consistent with deeper bilayer penetration. Cumulative data from release kinetics and retention studies along with fluorescence measurements suggest that PC liposome-insulin fibril composites represent the most promising DOX nanocarriers, combining enhanced drug encapsulation, structural stability, and optimal drug location within the bilayer. The results obtained provide valuable insights into the design of protein-lipid nanomaterials for enhanced drug delivery, offering promising avenues for the development of more effective and targeted therapeutic strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbamem.2025.184426 | DOI Listing |
Int J Biol Macromol
September 2025
Crystal Growth Centre, Anna University, Chennai, 600025, Tamil Nadu, India.
Increase in breast cancer has led to the search for systems that can enable, targeted, sustained and prolonged release of drugs while simultaneously reducing the side effects posed by them. In light of this, folic acid-conjugated 5-Fluorouracil and doxorubicin loaded chitosan/Fe₃O₄ (FA-dual@CS/Fe₃O₄) nanocomposite has been synthesized using the chemical method for targeted breast cancer therapy in addition to CS/FeO and dual drug encapsulated CS/FeO. FTIR and XPS studies confirm the successful drug encapsulation and FA conjugation.
View Article and Find Full Text PDFRedox Biol
September 2025
National Clinical Research Center for Geriatric Diseases, The Second Medical Center, Chinese PLA General Hospital, 100853, Beijing, China; Institute of Geriatric Medicine, The Second Medical Center, Chinese PLA General Hospital, 100853, Beijing, China.
Small extracellular vesicles (sEVs) critically orchestrate inter-tissue and inter-organ communications and may play essential roles in heart-tumor interaction. However, whether cancer-secreted sEVs affect the progression of doxorubicin-induced cardiotoxicity (DOXIC) via orchestrating the tumor cell-cardiomyocyte crosstalk has not yet been explored. Herein, we reveal that Doxorubicin (DOX)-treated breast cancer cells secrete sEVs (D-BCC-sEVs) that exacerbate DOX-induced ferroptosis of human iPSC-derived cardiomyocytes (hiCMs).
View Article and Find Full Text PDFColloids Surf B Biointerfaces
August 2025
Department of Oncology Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, China. Electronic address:
This study reports the synthesis and characterization of an injectable nano-hydrogel composite (m@NPs-HG) based on selenium nanoparticles (Se NPs) and carboxymethyl chitosan (CMCS) nanoparticles for enhanced cancer therapy. Selenium nanoparticles were stabilized using CMCS to form copper selenide nanoparticles (CSe NPs), while doxorubicin (DOX)-loaded CMCS nanoparticles (CD NPs) were encapsulated within cancer cell membranes to generate biomimetic nanoparticles (m@NPs). Subsequently, CSe NPs and m@NPs were integrated into a hydrogel via crosslinking with CuCl, resulting in the formation of m@NPs-HG.
View Article and Find Full Text PDFInt J Nanomedicine
September 2025
Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China.
Objective: The combination of DOX and 5-Fu is an important chemotherapeutic regimen but lacks targeting to solid tumor sites. Precise drug delivery via folate-modified nanomaterials is an important measure to improve efficacy and reduce toxicity.
Methods: CaCO nanoparticles served as the carrier for loading DOX and 5-Fu, followed by encapsulation with folic acid-modified polydopamine (PDA) to form a smart dual drug-carrying nanosystem called FA-DCFP.
ACS Appl Bio Mater
September 2025
Amity Institute of Nanotechnology, Amity University Kolkata, Major Arterial Road, AA II, Newtown, Kolkata, West Bengal 700135, India.
In diagnostics, targeting ability is still a topic of concern for cancer cell detection as well as the drug delivery process. Selective detection of cancer cells from normal cells is a highly demanding but also crucial and challenging task. Recent emergence of folic acid as a targeting ligand can improve the drug delivery systems specifically targeted to cancer cells due to the high affinity to bind the folate receptor (FR) on the surface of cancer cells.
View Article and Find Full Text PDF