98%
921
2 minutes
20
Primary dorsal root ganglion (DRG) cell cultures provide a valuable model for studying in vitro sensory transduction, neuropathies, and chronic pain, as they replicate the in vivo heterogeneity of DRG neurons and non-neuronal cells. However, traditional patch-clamp techniques are invasive and cannot capture the collective cell dynamics. While planar multielectrode arrays (MEAs) offer a non-invasive alternative, they suffer from poor cell-electrode coupling and limited resolution for identifying specific DRG neuronal types like C-fiber nociceptors, key targets in chronic pain research. This work demonstrates that silicon nanowire (SiNW) mat-based MEAs, while maintaining their reduced invasiveness, enable continuous intracellular recordings from neurons in primary rat DRG cell cultures. Supported by a cortical astrocyte feeder layer, SiNW mats promote DRG neuron and glial cell growth preserving cells' in vivo morphological and functional characteristics. Integrated into a compartmentalized MEA, they enable reliable recordings of drug-modulated neuronal activity alongside a baseline related to the astrocyte layer. The recorded signals exhibit characteristics of intracellular action potentials, suggesting spontaneous intracellular access by SiNWs. Distinct electrophysiological signatures allow identifying C-fiber nociceptors, as confirmed by patch-clamp measurements. This platform represents a powerful tool for investigating in vitro pain mechanisms, with potential applications in preclinical pain research and pharmacological translational studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12232127 | PMC |
http://dx.doi.org/10.1002/adhm.202500379 | DOI Listing |
Biofabrication
September 2025
Institute of Macromolecular Chemistry, Institute of Macromolecular Chemistry Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Prague, Prague, 162 06, CZECH REPUBLIC.
Extensive peripheral nerve injuries often lead to the loss of neurological function due to slow regeneration and limited recovery over large gaps. Current clinical interventions, such as nerve guidance conduits (NGCs), face challenges in creating biomimetic microenvironments that effectively support nerve repair. The developed GrooveNeuroTube is composed of hyaluronic acid methacrylate and gelatin methacrylate hydrogel, incorporating active agents (growth factors and antibacterial agents) encapsulated within an NGC conduit made of 3D-printed PCL grid fibers.
View Article and Find Full Text PDFElife
September 2025
Department of Neuroscience, Washington University School of Medicine, St Louis, United States.
Peripheral sensory neurons regenerate their axons after injury to regain function, but this ability declines with age. The mechanisms behind this decline are not fully understood. While excessive production of endothelin 1 (ET-1), a potent vasoconstrictor, is linked to many diseases that increase with age, the role of ET-1 and its receptors in axon regeneration is unknown.
View Article and Find Full Text PDFZ Rheumatol
September 2025
Clinic of Internal Medicine III, Department of Oncology, Hematology, Cell and Immunotherapies, Clinical Immunology and Rheumatology, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany.
Background: Interstitial lung diseases (ILD) represent an interdisciplinary clinical challenge and are not uncommonly associated with rheumatological diseases. Interstitial lung disease multidisciplinary meetings (ILD-MDM) provide a structured platform for interdisciplinary case discussions and decision making. Despite their great importance in patient care, data on the prevalence, structure and function of ILD-MDM in Germany are lacking.
View Article and Find Full Text PDFOsteoarthritis Cartilage
September 2025
Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA. Electronic address:
Objective: Inflammation is a key driver of disc herniation, a major cause of back pain and disability. Heterogeneous macrophages infiltrated at disc hernia sites, yet their role in disease pathology and pain remains unclear. This study investigates the role of CX3CR1⁺ macrophages and microglia in local inflammation and pain using transgenic mouse models and surgically induced disc herniation model.
View Article and Find Full Text PDFGut Microbes
December 2025
Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy.
Chronic gastrointestinal pain is a hallmark of most intestinal pathologies, yet effective treatments remain elusive given the complexity of the underlying mechanisms. Aiming to investigate the intestinal epithelium contribution to visceral pain modulation in dysbiosis context, we first demonstrated that intracolonic instillation of microbe-free fecal supernatants from mice with post-inflammatory dysbiosis induced by dextran sodium sulfate (FS) provokes visceral hypersensitivity in recipient mice. Epithelium involvement in the response to FS was analyzed through a novel approach comprising murine epithelial colon organoids and primary dorsal root ganglia (DRG) neurons.
View Article and Find Full Text PDF