Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
As an important food crop and nutritional source, mungbean has prioritized yield improvement as a key objective in breeding programs. In present study, we conducted a QTL meta-analysis to integrate 660 QTLs related to yield and yield-related traits in mungbean published over the past 20 years. A total of 590 initial QTLs were mapped onto a high-density consensus map, resulting in the identification of 72 meta-QTLs (MQTLs). These MQTLs were unevenly distributed across 11 linkage groups (LGs) with an average confidence interval (CI) of 1.21 cM, which was 6.26-fold narrower than the average CI of the initial QTLs. Among these 72 MQTLs, 20 were validated in a genome-wide association study (GWAS) for yield and yield-related traits in mungbean. Orthologous MQTL analysis revealed that 22 mungbean MQTLs were collinear with 19 MQTLs in common bean for yield and yield-related traits. In addition, 20 breeder's MQTLs were screened from the 72 MQTLs, and 339 gene models were identified within the breeder's MQTL regions. Twenty-two mungbean orthologs of yield-related genes such as seed germination, tiller number, and plant height in rice and were identified in the breeder's MQTL regions using homology analysis. This study contributes to understanding the genetic mechanisms for yield and yield-related traits and provides new ideas for the genetic improvement and breeding of mungbean.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12095261 | PMC |
http://dx.doi.org/10.3389/fgene.2025.1600979 | DOI Listing |