98%
921
2 minutes
20
Global floods in arsenic (As)-stressed paddy fields affect rice productivity. Future predictions of flood-related disasters provoke an urge to opt for climate-smart varieties for a secure supply. Thus, this study is designed to present the mechanisms favoring a traditional variety Mini mansoori (M.M) to withstand the dual stress of As and submergence (Sub). The investigation involved the identification of the key attributes regulating the physio-biochemical shifts in 3- and 7-day (d) submerged plants. Our results indicated that at 3 days, gas-film (GF) decrement correlated with reduced photosynthesis and Kreb-cycle enzymes. This, in turn, stimulated anaerobic enzymes, salicylic acid, and gibberellic acid (SA-GA) production, which increased glutamate metabolism through GDH enzyme, ultimately enhancing GABA and proline production to cover the energy gap. Proline dehydrogenase enzyme at 3 days monitored the stabilized proline turnover by catabolizing proline into glutamate while releasing reducing equivalents for additional ATP generation. However, at 7 days, further enhancement in GA content led to shoot elongation. The expanded GF and new leaf emergence recovered the photosynthetic machinery, TCA functioning, sugar reserves, and GABA content via proline homeostasis. This proline metabolic balance accentuated As tolerance and Sub resistance, henceforth presenting M.M. var. as climate smart for future crop improvements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ppl.70272 | DOI Listing |
MicroPubl Biol
August 2025
Molecular, Cellular and Developmental Biology, University of Toledo, Toledo, Ohio, United States.
Cadherin-related family member 5 (CDHR5) is a protocadherin found enriched at the tips of brush border microvilli of the gut and kidney, where it plays an important role in the development of these specialized microvilli. CDHR5 is a type-1 transmembrane protein with a short cytoplasmic tail that contains a number of poly-proline motifs of unknown function. We performed an analysis of the poly-proline stretches in the CDHR5 cytoplasmic tail and show that mutation of these motifs does not largely influence the targeting of CDHR5 to microvilli, but does significantly impact the ability of the cadherin to promote microvillar elongation.
View Article and Find Full Text PDFFood Chem (Oxf)
December 2025
College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China.
The calipash, a collagen-rich tissue in , undergoes structural degradation during infection, compromising its economic value. This study investigates the underlying collagen alterations. Turtles were challenged with , and samples were collected at 0 h, 6 h, 1d, 3d, 6d, and 10d post-infection.
View Article and Find Full Text PDFOpen Life Sci
August 2025
Department of Biology, Thai Nguyen University of Education, Thai Nguyen 24000, Vietnam.
DREB7 in (L) is a novel trans-acting transcription factor (TF) that binds to the -acting sequences of promoters to activate the expression of downstream genes in response to abiotic factors. This study presents the experimental results and analyzes the relationship between the overexpression of the and , as well as the proline content, in transgenic soybean lines. The results of qRT-PCR analysis of four TG1 transgenic soybean lines (TG1-2, TG1-5, TG1-7, and TG1-10) showed that the gene had significantly higher transcriptional expression under untreated and salt stress conditions.
View Article and Find Full Text PDFJ Neurochem
September 2025
Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
Memory formation involves a complex interplay of molecular and cellular processes, including synaptic plasticity mechanisms such as long-term potentiation (LTP) and long-term depression (LTD). These processes rely on activity-dependent gene expression and local protein synthesis at synapses. A central unresolved question in neuroscience is how memories can be stably maintained over time, despite the transient nature of the proteins involved in their initial encoding.
View Article and Find Full Text PDFPlant Sci
September 2025
Department of Life Sciences and Systems Biology, Plant Physiology Unit, University of Turin, Via Quarello15/a, 10135 Turin, Italy.
Cerium (Ce), the most abundant of the rare Earth elements (REEs), is increasingly recognized as an environmental contaminant due to its growing applications in various industrial and agricultural sectors. This study investigates the physiological, biochemical, and molecular responses of Brassica rapa L. plants to varying concentrations of Ce exposure to elucidate its effects on plant growth, metabolism, and stress responses.
View Article and Find Full Text PDF