98%
921
2 minutes
20
Background: The gut microbiota plays a crucial role in host health. Recent study revealed that ubiquitin-specific protease 25 (USP25) deficiency affected colonic immune responses and resistance to certain bacterial infection. This study aimed to investigate the impact of USP25 gene deletion on the gut microbiota of mice, utilizing 16 S rRNA amplicon sequencing and metagenomic sequencing to provide a comprehensive analysis of microbial diversity, composition and functional characteristics.
Methods: We collected fecal samples from 10 wild type (WT) C57BL/6J mice and 10 USP25 mice (C57BL/6J-Usp25cyagen) for 16 S rRNA amplicon sequencing. Subsequently, the 6 of the 20 samples underwent further analysis using metagenomic sequencing.
Results: Our results revealed significant differences in the gut microbiota between USP25 knockout (KO) mice and wild-type (WT) controls, with KO mice exhibiting 1,858 unique amplicon sequence variants (ASVs) compared to 1,723 in WT mice. Notably, the KO group displayed a higher tendency for biofilm formation and a greater proportion of gram-negative bacteria, while the WT group demonstrated enhanced stress tolerance and a higher presence of gram-positive bacteria. Functional prediction analyses indicated an increase in antibiotic resistance genes in the KO mice, particularly for tetracycline, cephalosporin, and sulfonamides, suggesting a potential risk for clinical antibiotic treatment efficacy. Moreover, KEGG pathway enrichment analysis revealed significant enrichment for fructose and mannose metabolism, streptomycin biosynthesis in the KO group. Furthermore, an increase in protective microbes alongside a decrease in potential pathogens in the KO microbiota hinted at altered immune responses due to USP25 deletion.
Conclusion: Our findings elucidate the essential role of USP25 in modulating gut microbiota composition and function, providing insights for future therapeutic strategies targeting gut microbiota in disease contexts.
Clinical Trail Number: Not applicable.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12096529 | PMC |
http://dx.doi.org/10.1186/s12866-025-04035-y | DOI Listing |
Folia Microbiol (Praha)
September 2025
Department of Gastroenterology, Chongqing University Cancer Hospital, Chongqing, China.
Microbiome dysbiosis in reflux esophagitis has been extensively studied. However, limited research has examined microbiota across different segments of the upper gastrointestinal tract in reflux esophagitis. In this study, we investigated microbial alterations in three esophageal segments (upper, middle, and lower) and the gastric fundus of reflux esophagitis patients and healthy controls.
View Article and Find Full Text PDFNat Cancer
September 2025
Nature Cancer, .
J Immunother Cancer
September 2025
National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
Background: Improving the efficacy of anti-programmed death 1 (PD-1) monoclonal antibody (mAb) therapy remains a major challenge for cancer immunotherapy in non-small cell lung cancer (NSCLC). Gut microbial metabolites can influence immunotherapy efficacy.
Methods: ELISA was used to compare the serum 5-hydroxyindoleacetic acid (5-HIAA) level in patients with NSCLC.
BMJ Open
September 2025
Department of Gastroenterology, Hepatology, Infectious Diseases and Intoxication, University Hospital Heidelberg, Heidelberg, Germany.
Introduction: Combined vascular endothelial growth factor/programmed death-ligand 1 blockade through atezolizumab/bevacizumab (A/B) is the current standard of care in advanced hepatocellular carcinoma (HCC). A/B substantially improved objective response rates compared with tyrosine kinase inhibitor sorafenib; however, a majority of patients will still not respond to A/B. Strong scientific rationale and emerging clinical data suggest that faecal microbiota transfer (FMT) may improve antitumour immune response on PD-(L)1 blockade.
View Article and Find Full Text PDFMicrob Pathog
September 2025
Department of Chinese Formulae, Heilongjiang University of Chinese Medicine, Harbin, China. Electronic address:
Sepsis is a systemic inflammatory response syndrome triggered by infection. Severe sepsis is associated with dysbiosis of the intestinal flora and impaired intestinal function. Ellagic acid (EA) is a natural compound known for its ability to inhibit bacteria and viruses, thereby preventing infections.
View Article and Find Full Text PDF