Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Excessive reactive oxygen species (ROS) are closely associated with the initiation and progression of cancers. As the most abundant intracellular antioxidant, glutathione (GSH) plays a critical role in regulating cellular ROS levels, modulating physiological processes, and is intricately linked to tumor progression and drug resistance. However, the underlying mechanisms remain not fully elucidated. Non-coding RNAs (ncRNAs), including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), are key regulators of GSH levels. Different ncRNAs modulate various pathways involved in GSH metabolism, and these regulatory targets have the potential to serve as therapeutic targets for enhancing cancer treatment. In this review, we summarize the functions of GSH metabolism and highlight the significance of ncRNA-mediated regulation of GSH in cancer progression, drug resistance, and clinical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12150168 | PMC |
http://dx.doi.org/10.1016/j.redox.2025.103689 | DOI Listing |