A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Effectiveness and Methodologies of Virtual Reality Dental Simulators for Veneer Tooth Preparation Training: Randomized Controlled Trial. | LitMetric

Effectiveness and Methodologies of Virtual Reality Dental Simulators for Veneer Tooth Preparation Training: Randomized Controlled Trial.

J Med Internet Res

Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatolog

Published: May 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Virtual reality (VR) simulators are increasingly used in dental education, offering advantages such as repeatable practice and immediate feedback. However, evidence comparing their efficacy to traditional phantom heads for veneer preparation training remains limited.

Objective: This study aimed to compare the effectiveness of 2 widely used VR simulators (Unidental and Simodont) against traditional phantom heads for veneer tooth preparation training and evaluate the impact of training sequence (simulator-first vs phantom-head-first) on skill acquisition.

Methods: A randomized controlled trial was conducted with 80 fourth-year dental students from Peking University School of Stomatology. Participants were stratified by gender and academic performance, then equally allocated to 8 groups. Groups 1-3 trained exclusively using Unidental, Simodont, or phantom heads, respectively, while groups 4-8 followed hybrid sequences combining simulator and phantom-head training. Each participant performed veneer preparations on a maxillary central incisor. Preparations were evaluated by a blinded instructor using a validated 100-point rubric assessing marginal integrity (30%), preparation depth (25%), proximal contour (25%), and surface smoothness (20%). Posttraining questionnaires (100-point scale) compared user perceptions of simulator realism, haptic feedback, and educational value.

Results: There were no statistically significant differences in the preparation quality among groups using different training methods (Unidental: 88.9, SD 3.6; Simodont: 88.6, SD 1.6; phantom heads: 89.4, SD 2.8; P=.81) or different training methodologies (simulator-first vs phantom-head-first) (simulator first: P=.18; phantom head first: P=.09, different sequences of Unidental: P=.16; different sequences of Simodont: P=.11). However, significant differences were observed between the evaluations of the 2 simulators in terms of realism of the odontoscope's reflection (Simodont: 55.6, SD 33.7; Unidental: 87.5, SD 13.9; P<.001), force feedback (Simodont: 66.2, SD 22.4; Unidental: 50.8, SD 18.9; P=.007), and simulation of the tooth preparation process (Simodont: 64.4, SD 16.0; Unidental: 50.6, SD 16.6; P=.003). Evaluation results showed no statistical differences between the 2 simulators in display effect (Simodont: 77.43, SD 21.58; Unidental: 71.68, SD 20.70; P=.24), synchronism of virtual and actual dental instruments (Simodont: 67.86, SD 19.31; Unidental: 59.29, SD 20.10; P=.11), and dental bur operation simulation (Simodont: 63.32, SD 19.99; Unidental: 55.79, SD 19.62; P=.16). The Unidental simulator was rated better than the Simodont simulator in terms of the realism of odontoscope's reflection. In all other aspects, Simodont was superior to Unidental. There was no significant difference in the students' attitudes towards the 2 simulators (improve skills: P=.19; inspire to learn: P=.29; will to use: P=.40; suitable for training: P=.39).

Conclusions: The study found no significant differences in training outcomes between VR simulators and traditional phantom heads for veneer preparation, suggesting that VR technology may serve as a viable alternative or supplementary tool in dental education. However, the absence of significant differences does not imply equivalence, as formal equivalence testing was not performed. Future studies should incorporate equivalence testing and explore cost-effectiveness, long-term skill retention, and adaptability to complex clinical scenarios.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12121536PMC
http://dx.doi.org/10.2196/63961DOI Listing

Publication Analysis

Top Keywords

phantom heads
16
preparation training
12
virtual reality
8
veneer tooth
8
tooth preparation
8
randomized controlled
8
controlled trial
8
traditional phantom
8
heads veneer
8
unidental simodont
8

Similar Publications