Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Despite advances in determining the factors influencing cleavage activity of a CRISPR-Cas9 single guide RNA (sgRNA) at an (off-)target DNA sequence, a comprehensive assessment of pertinent physico-chemical/structural descriptors is missing. In particular, studies have not yet directly exploited the information-rich internal protein 3D nanoenvironment of the sgRNA-(off-)target strand DNA pair, which we obtain by harvesting 634 980 residue-level features for CRISPR-Cas9 complexes. As a proof-of-concept study, we simulated the internal protein 3D nanoenvironment for all experimentally available single-base protospacer-adjacent motif-distal mutations for a given sgRNA-target strand pair. By determining the most relevant residue-level features for CRISPR-Cas9 off-target cleavage activity, we developed STING_CRISPR, a machine learning model delivering accurate predictive performance of off-target cleavage activity for the type of single-base mutations considered in this study. By interpreting STING_CRISPR, we identified four important Cas9 residue spatial hotspots and associated structural/physico-chemical descriptor classes influencing CRISPR-Cas9 (off-)target cleavage activity for the sgRNA-target strand pairs covered in this study.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12093099PMC
http://dx.doi.org/10.1093/nargab/lqaf054DOI Listing

Publication Analysis

Top Keywords

cleavage activity
16
internal protein
12
protein nanoenvironment
12
crispr-cas9 off-target
12
off-target cleavage
12
residue-level features
8
features crispr-cas9
8
sgrna-target strand
8
crispr-cas9
5
off-target
5

Similar Publications

An ultrasensitive biosensor for H1N1 virus coupled with 3D spherical DNA nanostructure and CRISPR-Cas12a.

Spectrochim Acta A Mol Biomol Spectrosc

September 2025

Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China. Electronic address:

To achieve ultrasensitive and real-time detection of the H1N1 influenza virus, this study designed a nucleic acid-free fluorescent biosensor based on 3D spherical DNA nanostructure and CRISPR/Cas12a (3D-SDNC). The biosensor constructs a rigid 3D nano-framework via self-assembly of six oligonucleotide chains, with H1N1-specific nucleic acid aptamers and Cas12a activator strands strategically positioned at multi-spined vertices for precise spatial coupling between viral recognition and signal transduction. Upon aptamer-virus binding, the induced conformational change liberates the activator strand, thereby activating the trans-cleavage activity of the Cas12a/crRNA complex to efficiently cleave the HEX/BHQ1 double-labeled fluorescent probe and initiate cascade signal amplification.

View Article and Find Full Text PDF

Human cord blood (CB) myeloid progenitor reprogramming to a high-fidelity human induced pluripotent stem cell (hiPSC) state can be achieved using non-integrating episomal vectors and stromal signals. These conventional, primed CB-hiPSC lines can subsequently be chemically reverted with high efficiencies to a blastomere-like Tankyrase/PARP Inhibitor-Regulated Naive Stem Cell (TIRN-SC) state with functional totipotency. PARP-regulated TIRN-SCs are human stem cells with high epigenetic plasticity, stable epigenomic imprints, and have greater differentiation potency than conventional, lineage-primed hiPSCs.

View Article and Find Full Text PDF

The anaerobic glycyl radical enzyme choline trimethylamine-lyase (CutC) is produced by multiple bacterial species in the human gut microbiome and catalyzes the conversion of choline to trimethylamine (TMA) and acetaldehyde. CutC has emerged as a promising therapeutic target due to its role in producing TMA, which is subsequently oxidized in the liver to form trimethylamine--oxide (TMAO). Elevated TMAO levels are associated with several human diseases, including atherosclerosis and other cardiovascular disorders─a leading cause of mortality worldwide.

View Article and Find Full Text PDF

Glycocins are a growing family of ribosomally synthesized and posttranslationally modified peptides (RiPPs) that are O- and/or S-glycosylated. Using a sequence similarity network of putative glycosyltransferases, the thg biosynthetic gene cluster was identified in the genome of Thermoanaerobacterium thermosaccharolyticum. Heterologous expression in Escherichia coli showed that the glycosyltransferase (ThgS) encoded in the biosynthetic gene cluster (BGC) adds N-acetyl-glucosamine (GlcNAc) to Ser and Cys residues of ThgA.

View Article and Find Full Text PDF

Engineering Brønsted Acidic Microenvironments via Strong Metal-Support Interaction in Single-Atom Pd/CeO for Acid-Free Acetalization Catalysis.

Inorg Chem

September 2025

College of Chemistry and Materials Science, The key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materia

Conventional acid-catalyzed acetalization faces significant challenges in catalyst recovery and poses environmental concerns. Herein, we develop a CeO-supported Pd single-atom catalyst (Pd/CeO) that eliminates the reliance on liquid acids by creating a localized H-rich microenvironment through heterolytic H activation. X-ray absorption near-edge structure and extended X-ray absorption fine structure analyses confirm the atomic dispersion of Pd via Pd-O-Ce coordination, while density functional theory (DFT) calculations reveal strong metal-support interactions (SMSI) that facilitate electron transfer from CeO oxygen to Pd, downshifting the Pd d-band center and optimizing H activation.

View Article and Find Full Text PDF