Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Lyotropic liquid crystalline nanostructures formed by self-assembly in an aqueous medium are of fundamental interest and crucial for therapeutic applications, encapsulation of nutraceuticals, tissue engineering, and diagnostics. The biomimetic lipid bilayer building blocks impart biodegradable properties and low toxicity of the created nanoassemblies. The question of synergistic or quenching effects on the resulting bioactivity arises from the coencapsulation of multiple antioxidants ( vitamin E (VitE), curcumin (CU), or coenzyme Q) in nanocarriers of mixed nonlamellar-phase lipids (e.g., amphiphilic monoglycerides or plasmalogens with long polyunsaturated fatty acid (PUFA) chains). The response to this question should favor phytochemical-based therapies against oxidative stress and inflammatory disorders using sustainable nanomedicines. Herein, we investigate the nanodispersion of multicomponent antioxidant/lipid mixtures using the copolymer Pluronic F127 and three PEGylated amphiphiles (TPGS-PEG, MO-PEG and DSPE-PEG). The purpose is to establish possible relationships between the amphiphilic pharmaceutical compositions, structural stability, degradability in the biological cell culture medium, and the effects on antioxidant activity. The structures and the topologies of the phytochemical-loaded mesophases were revealed by synchrotron small-angle X-ray scattering and cryogenic transmission electron microscopy imaging. We found that encapsulated antioxidants (CU, Q or VitE) fine-tune the lipid bilayer properties and the nanostructure of the self-assembled systems to form lamellar (L), inverted hexagonal (H), or cubic () liquid crystalline phases. The results demonstrated that the composition of the nanoassemblies (lipids, dispersing agents, and antioxidants) governs the structural organization through changes in the interfacial curvature and miscibility effects. A minimal toxicity of the nanoassemblies was observed using the human neuroblastoma cell line (SH-SY5Y). The biodegradability/stability of the nanodispersions was linked with gradual dynamic changes in nanoparticle size distribution in the biological cell culture medium (DMEM). The established enhanced reactive oxygen species (ROS)-scavenging activity of the liquid crystalline nanoformulations is of interest for developing safe pharmaceutical nanosystems for multitargeted delivery of poorly soluble phytochemicals.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsbiomaterials.5c00006DOI Listing

Publication Analysis

Top Keywords

liquid crystalline
12
antioxidant activity
8
lipid bilayer
8
biological cell
8
cell culture
8
culture medium
8
nanostructuring antioxidant
4
activity nanotherapeutics
4
nanotherapeutics designed
4
designed self-assembly
4

Similar Publications

Hyperbolic Spin Liquids.

Phys Rev Lett

August 2025

University of Alberta, Department of Physics, Edmonton, Alberta T6G 2E1, Canada.

Hyperbolic lattices present a unique opportunity to venture beyond the conventional paradigm of crystalline many-body physics and explore correlated phenomena in negatively curved space. As a theoretical benchmark for such investigations, we extend Kitaev's spin-1/2 honeycomb model to hyperbolic lattices and exploit their non-Euclidean space-group symmetries to solve the model exactly. We elucidate the ground-state phase diagram on the {8,3} lattice and find a gapped Z_{2} spin liquid with Abelian anyons, a gapped chiral spin liquid with non-Abelian anyons and chiral edge states, and a Majorana metal whose finite low-energy density of states is dominated by non-Abelian Bloch states.

View Article and Find Full Text PDF

Promoter-assisted chemical vapor deposition (CVD) has emerged as a robust strategy for the low-temperature synthesis of diverse transition metal dichalcogenides (TMDs). In these processes, promoter-induced intermediates facilitate specific reaction pathways, enabling controlled growth via vapor-solid-solid (VSS) or vapor-liquid-solid (VLS) modes. While previous studies have primarily focused on transition metal precursors, growth pathways involving engineered chalcogen-based intermediates remain underexplored due to their volatility and low melting points.

View Article and Find Full Text PDF

Laser processing in liquids: insights into nanocolloid generation and thin film integration for energy, photonic, and sensing applications.

Beilstein J Nanotechnol

August 2025

Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León. San Nicolás de los Garza, Nuevo León, 66455, México.

Nanoparticles in their pure colloidal form synthesized by laser-assisted processes such as laser ablation/fragmentation/irradiation/melting in liquids have attained much interest from the scientific community because of their specialties like facile synthesis, ultra-high purity, biocompatibility, colloidal stability in addition to other benefits like tunable size and morphology, crystalline phases, new compounds and alloys, and defect engineering. These nanocolloids are useful for fabricating different devices mainly with applications in optoelectronics, catalysis, sensors, photodetectors, surface-enhanced Raman spectroscopy (SERS) substrates, and solar cells. In this review article, we describe different methods of nanocolloidal synthesis using laser-assisted processes and corresponding thin film fabrication methods, particularly those utilized for device fabrication and characterization.

View Article and Find Full Text PDF

The crystallization behavior of ionic liquids (ILs) 1-butyl-3-methylimidazolium [BMIM] hexafluorophosphate [PF] and chloride [Cl] is investigated upon confinement in 2.3 or 8.2 nm diameter silica nanopore arrays, along with the effects of covalently modifying the pore walls with 1-(3-trimethoxysilylpropyl)3-methylimidazolium [TMS-MIM] groups.

View Article and Find Full Text PDF

The binary composites of liquid () and crystalline () difluoroboron β-diketonate (BFdbk) complexes exhibited a metastable nature arising from the intricate interplay between their liquid and crystalline components in bulk. Differential scanning calorimetry (DSC) measurements indicate nearly complete miscibility of and when the fractional volume of occupied a substantial portion, corresponding to below 47 mol % of the content. In contrast, polarized optical microscopic (POM) observations unveiled that the / composites between two glass slides crystallized regardless of the content.

View Article and Find Full Text PDF