98%
921
2 minutes
20
Targeted protein degradation using proteolysis-targeting chimeras (PROTACs) has emerged as a powerful strategy for modulating protein function. In this study, we developed mTOR-targeting PROTACs by conjugating the mTOR agonist MHY-1485 to the Cereblon (CRBN) ligand pomalidomide, demonstrating that even activators can serve as effective warheads for targeted protein degradation. Through systematic screening, we identified PD-M6 as a potent bifunctional molecule capable of degrading mTOR (DC = 4.8 μM), reversing the proliferative effects of MHY-1485, and inhibiting cell proliferation (IC = 11.3 μM) while inducing autophagy, akin to the mTOR known inhibitor rapamycin. Proteomic analysis further revealed that PD-M6 downregulated key proteins in the mTOR signaling pathway, including LAMTOR1, MAPKAP1, and CASTOR1, which are involved in proteasome-mediated degradation, cell division, apoptosis, and lysosomal signaling. Notably, PD-M6 specifically induced the degradation of LAMTOR1. These findings highlight a novel approach for designing PROTACs from agonists, broadening the scope of targeted protein degradation strategies for therapeutic applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2025.117774 | DOI Listing |
JCI Insight
September 2025
Edinburgh Medical School: Biomedical Sciences & Euan MacDonald Centre for M, University of Edinburgh, Edinburgh, United Kingdom.
Spinal muscular atrophy (SMA) is a neuromuscular disease caused by low levels of SMN protein. Several therapeutic approaches boosting SMN are approved for human patients, delivering remarkable improvements in lifespan and symptoms. However, emerging phenotypes, including neurodevelopmental comorbidities, are being reported in some treated SMA patients, indicative of alterations in brain development.
View Article and Find Full Text PDFMol Pharm
September 2025
Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-Ku, Kyoto 606-8501, Japan.
Fibroblast activation protein (FAP) is an attractive biomarker for tumor-targeting radioligands. While [Ga]Ga-FAPI-46 is a promising FAP-targeting radioligand for cancer diagnosis, clinical application of [Lu]Lu-FAPI-46 for targeted radionuclide therapy is limited due to its insufficient tumor retention. Albumin binder (ALB) including 4-(-iodophenyl)butyric acid is widely utilized to improve tumor accumulation of radioligands.
View Article and Find Full Text PDFJ Clin Invest
September 2025
The University of Texas at Austin, Austin, United States of America.
Background: Following SARS-CoV-2 infection, ~10-35% of COVID-19 patients experience long COVID (LC), in which debilitating symptoms persist for at least three months. Elucidating biologic underpinnings of LC could identify therapeutic opportunities.
Methods: We utilized machine learning methods on biologic analytes provided over 12-months after hospital discharge from >500 COVID-19 patients in the IMPACC cohort to identify a multi-omics "recovery factor", trained on patient-reported physical function survey scores.
Proc Natl Acad Sci U S A
September 2025
Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba 305-8577, Japan.
All organisms are exposed to various stressors, which can sometimes lead to organismal death, depending on their intensity. While stress-induced organismal death has been observed in many species, the underlying mechanisms remain unclear. In this study, we investigated the molecular mechanisms of stress-induced organismal death in the fruit fly .
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240.
Major depressive disorder affects millions worldwide, yet current treatments require prolonged administration. In contrast, ketamine produces rapid antidepressant effects by blocking spontaneous N-Methyl-D-Aspartate (NMDA) receptor signaling, which lifts the suppression of protein synthesis and triggers homeostatic synaptic plasticity. Here, we identify a parallel signaling pathway involving metabotropic glutamate receptor 5 (mGluR5) that promotes rapid antidepressant-like effects.
View Article and Find Full Text PDF