Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Lymph node metastasis (LNM) is strongly associated with poor prognosis in hypopharyngeal squamous carcinoma (HPSCC). Identifying key drivers of LNM and potential therapeutic targets in HPSCC is therefore essential for the early detection of high-risk patients and for informing personalized treatment strategies.

Methods: Single-cell RNA sequencing data were used to characterize malignant epithelial cells (maECs) in HPSCC primary tumors (PT) and LNM, as well as differences in cell-to-cell communication. Concurrently, combined with bulk RNA sequencing data, a ligand receptor pairs (LRs) model was developed to predict the prognosis of HPSCC patients.

Results: PT and LNM maECs have different gene expression characteristics, with genes involved in interferon signaling and TGF-β response pathways enriched in LNM maECs, suggesting potential immunosuppressive reprogramming. Cell communication analysis revealed distinct interactions and signaling features in PT and LNM microenvironments. Subsequently, a 4-LRs model was constructed to stratify HPSCC patients into low-or high-risk groups, with the high-risk group demonstrating significantly worse overall survival (OS) outcomes compared with the low-risk group in the training (p < 0.0001), testing (p = 0.0021), and entire (p < 0.0001) cohorts. Receiver operating characteristic curves showed that this risk model can effectively predict the 1-, 3-, and 5-year OS of HPSCC patients. Notably, the risk score effectively discriminated LNM status (area under the curve [AUC] = 0.927) among HPSCC patients, highlighting its potential as a HPSCC metastasis prediction tool.

Conclusions: These results provide biomarkers of LNM maECs as well as potential mechanisms of HPSCC metastasis, which may help with the precision treatment, diagnosis, and prognosis of HPSCC.

Download full-text PDF

Source
http://dx.doi.org/10.1002/hed.28195DOI Listing

Publication Analysis

Top Keywords

rna sequencing
12
bulk rna
8
hypopharyngeal squamous
8
sequencing data
8
lnm maecs
8
lnm
6
hpscc
5
single-cell bulk
4
sequencing reveal
4
reveal tumor
4

Similar Publications

Background: Alzheimer's disease (AD) patients and animal models exhibit an altered gut microbiome that is associated with pathological changes in the brain. Intestinal miRNA enters bacteria and regulates bacterial metabolism and proliferation. This study aimed to investigate whether the manipulation of miRNA could alter the gut microbiome and AD pathologies.

View Article and Find Full Text PDF

Background: Most RNA-seq datasets harbor genes with extreme expression levels in some samples. Such extreme outliers are usually treated as technical errors and are removed from the data before further statistical analysis. Here we focus on the patterns of such outlier gene expression to investigate whether they provide insights into the underlying biology.

View Article and Find Full Text PDF

Lung adenocarcinoma (LUAD) associated with usual interstitial pneumonia (UIP) harbours distinct features compared to lung adenocarcinoma without UIP. Therefore, we aimed to characterise the tumour microenvironment of LUAD with UIP by focusing on cancer-associated fibroblasts (CAFs) and stromal composition. Immunohistochemistry was performed on 32 LUAD samples (16 each with and without UIP) to evaluate CAF marker expression and lymphocyte infiltration.

View Article and Find Full Text PDF

CETN3 deficiency induces microcephaly by disrupting neural stem/progenitor cell fate through impaired centrosome assembly and RNA splicing.

EMBO Mol Med

September 2025

Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, National Stem Cell Translational Resource Center & Ministry of Education Stem Cell Resource Center, Frontier Science Center for Stem Cell Research, School of Li

Primary microcephaly, a rare congenital condition characterized by reduced brain size, occurs due to impaired neurogenesis during brain development. Through whole-exome sequencing, we identified compound heterozygous loss-of-function mutations in CENTRIN 3 (CETN3) in a 5-year-old patient with primary microcephaly. As CETN3 has not been previously linked to microcephaly, we investigated its potential function in neurodevelopment in human pluripotent stem cell-derived cerebral organoids.

View Article and Find Full Text PDF