98%
921
2 minutes
20
D. huoshanense is a traditional Chinese medicine with antidiabetes effects, but the underlying metabolic regulatory mechanism remains unknown. Plasma metabolomic analysis was applied to assess the metabolic regulatory mechanism underlying the alleviation of streptozotocin-induced type 1 diabetes (STZ-T1D) by D. huoshanense. The successfully STZ-T1D model rats were assigned to the model group, the model + water extract of D. huoshanense (DHWE) group, and the model + metformin (MET) group. They were administered the corresponding medication by gavage. After 28 days, the plasma levels of glucose, malondialdehyde (MDA), C-reactive protein (CRP), and total antioxidant capacity (T-AOC) were determined. Morphological changes in the pancreatic islet tissue were analyzed via hematoxylin and eosin (H&E) staining. The expression of occludin-1, zonula occludens protein 1 (ZO-1) and protein kinase RNA-like endoplasmic reticulum kinase (PERK) in the ileum tissue was determined via western blotting. Nontargeted metabolome analysis of the plasma was performed via ultrahigh-performance liquid chromatography. The results revealed that DHWE reduced blood glucose, C-reactive protein, and MDA levels; increased plasma T-AOC; improved intestinal mucous integrity and pancreatic islet morphological structure; and alleviated intestinal endoplasmic reticulum stress. Plasma metabolomics revealed that DHWE significantly increased the levels of ascorbic acid 2-sulfate, L-thyroxine, phosphatidylcholine (PC) (14:0e/5:0), and PC (16:1e/4:0); decreased the levels of D-(-)-fructose and indole-3-lactic acid; and significantly affected ascorbate and aldarate metabolism and glyoxylate and dicarboxylate metabolism in STZ-T1D rats (p < 0.05), and the effects on the citric acid cycle and pyruvate metabolism tended to be significant (p < 0.1). This study confirmed that DHWE alleviated STZ-T1D by reducing oxidative stress and the inflammatory response, enhancing intestinal mucosa integrity and affecting mainly the energy metabolism and vitamin C metabolism of STZ-T1D rats.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11418-025-01909-3 | DOI Listing |
World J Microbiol Biotechnol
September 2025
Department of Microbiology, University of Georgia, Athens, GA, 30602, USA.
While PGPB have historically been applied in agriculture, their formal recognition in the last century has driven intensive research into their role as sustainable tools for improving crop yield and stress tolerance. As they are primarily sourced from wild or native environments, the widespread enthusiasm has led to heightened expectations surrounding their potential, often based on the assumption that biological solutions are inherently safer and more effective than synthetic inputs. However, despite their popularity, increasing reports of inconsistent or limited performance under real-world, field conditions have raised critical questions about their credibility as biofertilizers and biocontrol agents.
View Article and Find Full Text PDFFASEB J
September 2025
Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.
Age-related cataract (ARC) represents a major global cause of visual impairment, with ultraviolet B (UVB) radiation recognized as a primary contributor to oxidative damage in the lens. FOXO3, a key regulator of aging, apoptosis, and oxidative stress-induced cell death, was investigated for its role and regulatory mechanisms in UVB-induced oxidative stress using human lens epithelial cells (HLECs). A progressive decrease in FOXO3 protein expression was observed in the lens capsules across various stages of cataract progression, as well as in UVB-exposed animal models and UVB-treated HLECs.
View Article and Find Full Text PDFBiotechnol J
September 2025
Department of Biochemical Engineering, University College London, London, UK.
Chimeric antigen receptor T-cell (CAR-T) therapies have demonstrated clinical efficacy in treating haematological malignancies, resulting in multiple regulatory approvals. However, there is a need for robust manufacturing platforms and the use of GMP-aligned reagents to meet the clinical and commercial demands. This study investigates the impact of serum/xeno-free medium (SXFM) and cytokine supplementation on CAR-T cell production in static and agitated culture systems, using 24-well plate G-Rex vessels and 500 mL stirred tank bioreactors (STRs), respectively.
View Article and Find Full Text PDFNucleic Acids Res
September 2025
School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, No. 100 Waihuanxi Road, Guangzhou 510006, China.
The 5' untranslated region (5'UTR) plays a crucial regulatory role in messenger RNA (mRNA), with modified 5'UTRs extensively utilized in vaccine production, gene therapy, etc. Nevertheless, manually optimizing 5'UTRs may encounter difficulties in balancing the effects of various cis-elements. Consequently, multiple 5'UTR libraries have been created, and machine learning models have been employed to analyze and predict translation efficiency (TE) and protein expression, providing insights into critical regulatory features.
View Article and Find Full Text PDFNucleic Acids Res
September 2025
Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
Cells may exploit oscillatory gene expression to encode biological information. Temporal features of oscillations, such as pulse frequency and amplitude, are determinant for the outcome of signalling pathways. However, little effort has been devoted to unveiling the role of pulsatility in the context of post-transcriptional gene regulation, where microRNAs act by binding to RNAs and regulate their expression.
View Article and Find Full Text PDF