Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: Tuberous breast deformity (TBD) is a congenital condition characterized by constriction of the breast base, parenchymal hypoplasia, and areolar herniation. The absence of a universally accepted classification system complicates diagnosis and surgical planning, leading to variability in clinical outcomes. Artificial intelligence (AI) has emerged as a powerful adjunct in medical imaging, enabling objective, reproducible, and data-driven diagnostic assessments.
Objectives: This study introduces an AI-driven diagnostic tool for tuberous breast deformity (TBD) classification using a Siamese Network trained on paired frontal and lateral images. Additionally, the model generates a continuous Tuberosity Score (ranging from 0 to 1) based on embedding vector distances, offering an objective measure to enhance surgical planning and improved clinical outcomes.
Methods: A dataset of 200 expertly classified frontal and lateral breast images (100 tuberous, 100 non-tuberous) was used to train a Siamese Network with contrastive loss. The model extracted high-dimensional feature embeddings to differentiate tuberous from non-tuberous breasts. Five-fold cross-validation ensured robust performance evaluation. Performance metrics included accuracy, precision, recall, and F1-score. Visualization techniques, such as t-SNE clustering and occlusion sensitivity mapping, were employed to interpret model decisions.
Results: The model achieved an average accuracy of 96.2% ± 5.5%, with balanced precision and recall. The Tuberosity Score, derived from the Euclidean distance between embeddings, provided a continuous measure of deformity severity, correlating well with clinical assessments.
Conclusions: This AI-based framework offers an objective, high-accuracy classification system for TBD. The Tuberosity Score enhances diagnostic precision, potentially aiding in surgical planning and improving patient outcomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/asj/sjaf090 | DOI Listing |