A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Spatiotemporal single-cell analysis elucidates the cellular and molecular dynamics of human cornea aging. | LitMetric

Spatiotemporal single-cell analysis elucidates the cellular and molecular dynamics of human cornea aging.

Genome Med

National Clinical Research Center for Ocular Diseases, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.

Published: May 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The human cornea is a transparent and uniquely ordered optical-biological system. Precise coordination of its cellular mechanisms is essential to maintain its transparency and functionality. However, the spatial, cellular and molecular architecture of the human cornea and its intercellular interactions during aging have not been elucidated.

Methods: We performed single-cell RNA sequencing (scRNA-seq) and single-cell SpaTial Enhanced REsolution Omics-sequencing (scStereo-seq) analysis in corneal tissue from eight eyes of donors aged 33-88 years to elucidate the spatiotemporal cellular and molecular dynamics of human cornea aging. Immunofluorescence staining and Western blotting were performed to validate the findings.

Results: Spatiotemporal single-cell analysis revealed the complex cellular landscape, spatial organization and intercellular communication within the human cornea. The subpopulations of major cell types of the cornea were elucidated with precise spatial positions. In particular, we identified novel subpopulations, mapped the spatial positioning of limbal stem cells within the limbal niche, and delineated the interactions between major cell types. We observed that three basal cell subsets migrate centripetally from the peripheral to the central cornea with age, suggesting the "spatiotemporal centripetal pattern" as a novel paradigm for the age-related migration of corneal epithelial cells. Furthermore, we elucidated the age-related, region-specific molecular and functional characteristics of the corneal endothelium, demonstrating differential metabolic capacities and functional properties between the peripheral and central regions.

Conclusions: As the first comprehensive spatiotemporal atlas, our work provides a valuable resource for understanding tissue homeostasis in the human cornea and advances research on corneal pathology, transplantation, senescence and regenerative medicine in the context of corneal aging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12087038PMC
http://dx.doi.org/10.1186/s13073-025-01475-zDOI Listing

Publication Analysis

Top Keywords

human cornea
24
cellular molecular
12
spatiotemporal single-cell
8
single-cell analysis
8
molecular dynamics
8
dynamics human
8
cornea
8
cornea aging
8
major cell
8
cell types
8

Similar Publications