A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Synergistic Integration of Laser Oxidation and Long Short-Term Memory for Advanced Odor Classification in Next-Generation Artificial Olfactory Systems. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Emulating and enhancing human olfactory capabilities, artificial olfactory technology provides adept detection of subtle odors, gases, and various chemical substances. Metal oxide semiconductors (MOSs) are ideal materials for next-generation artificial olfactory devices due to their outstanding gas sensing performance, characterized high sensitivity, high response speed, and robust stability, as well as their compatibility with microfabrication. For broader applications, developing a comprehensive database of diverse odorants is crucial, which necessitates expanding the types of MOS channels in artificial olfactory devices. This paper reports a laser-induced oxidation-based artificial olfactory device using a 7 × 3 sensor array composed of three metal oxides (SnO, ZnO, and WO). By analyzing the response pattern of various odorants using a deep neural network, the device achieved 95.2% accuracy in classifying eight single odor molecules. Additionally, it successfully deconvoluted the types and concentrations of two odor mixtures and classified ten types of wine with accuracies of 91.3% and 92.5%, respectively. Furthermore, this study identified the proper number and arrangement of sensors for next-generation e-nose development. Our innovative artificial olfactory system can be integrated into various fields, such as the aromatic industry and virtual reality, making it a beneficial technology for future artificial olfaction applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12379165PMC
http://dx.doi.org/10.1021/acssensors.5c00152DOI Listing

Publication Analysis

Top Keywords

artificial olfactory
24
next-generation artificial
8
olfactory devices
8
artificial
7
olfactory
7
synergistic integration
4
integration laser
4
laser oxidation
4
oxidation long
4
long short-term
4

Similar Publications