A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A CRISPR/Cas12a-Assisted SERS Nanosensor for Highly Sensitive Detection of HPV DNA. | LitMetric

A CRISPR/Cas12a-Assisted SERS Nanosensor for Highly Sensitive Detection of HPV DNA.

ACS Sens

Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350117, PR China.

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The lack of timely and effective screening and diagnosis is a major contributing factor to the high mortality rate of cervical cancer in low-income countries and resource-limited regions. Therefore, the development of a rapid, sensitive, and easily deployable diagnostic tool for HPV DNA is of critical importance. In this study, we present a novel high-sensitivity and high-specificity detection method for HPV16 and HPV18 by integrating the CRISPR/Cas12a system with surface-enhanced Raman scattering (SERS) technology. This method leverages the trans-cleavage activity of the CRISPR/Cas12a system, which cleaves biotin-modified spherical nucleic acids (Biotin-SNA) in the presence of target DNA, releasing free Biotin-DNA. The released Biotin-DNA preferentially binds to streptavidin-modified magnetic beads (SAV-MB), reducing the capture of Biotin-SNA by SAV-MB and thereby significantly enhancing detection sensitivity. This method offers the potential for point-of-care diagnostics as it operates efficiently at 37 °C without the need for thermal cycling. Using standard DNA samples, we demonstrated that this biosensor achieved detection limits as low as 209 copies/μL and 444 copies/μL within 95 min. When combined with recombinase polymerase amplification (RPA), the sensor demonstrated enhanced sensitivity, enabling detection of target DNA at concentrations as low as 1 copy/μL within approximately 50 min. Furthermore, validation with clinical samples confirmed the feasibility and practical applicability of this method. This novel SERS-based sensor offers a new and effective tool in the prevention and detection of cervical cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssensors.5c00547DOI Listing

Publication Analysis

Top Keywords

hpv dna
8
cervical cancer
8
crispr/cas12a system
8
target dna
8
detection
6
dna
5
crispr/cas12a-assisted sers
4
sers nanosensor
4
nanosensor highly
4
highly sensitive
4

Similar Publications