A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Observation of Water-Induced Synergistic Acidic Site from NMR-Invisible Al in Zeolite via Solid-State NMR Spectroscopy. | LitMetric

Observation of Water-Induced Synergistic Acidic Site from NMR-Invisible Al in Zeolite via Solid-State NMR Spectroscopy.

J Am Chem Soc

National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.

Published: May 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Zeolites are highly sensitive to water, which significantly affects their acidity─a key factor in catalytic reactions. This study investigates the dynamic interactions between water and often overlooked active sites, specifically the "NMR-invisible" aluminum species (tricoordinated framework Al─FAL and cationic extra-framework Al─EFAL) in ultrastable Y (USY) zeolite under ambient conditions. Using solid-state NMR spectroscopy combined with theoretical calculations, we demonstrate that water readily undergoes dissociative adsorption on these "NMR-invisible" Al sites. This process transforms both FAL and EFAL into "NMR-visible" Al species. The formation of new Brønsted acid sites on tetra-, penta-, and hexa-coordinated FAL results in an increase of over 60% in the BAS concentration in the USY zeolite. The hydrolysis of EFAL cations leads to the formation of Brønsted/Lewis acid synergistic sites, significantly improving the catalytic activity of USY zeolite. This enhancement is evident in the improved conversion of diethyl ether to ethene in the presence of moisture.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.5c01756DOI Listing

Publication Analysis

Top Keywords

usy zeolite
12
solid-state nmr
8
nmr spectroscopy
8
observation water-induced
4
water-induced synergistic
4
synergistic acidic
4
acidic site
4
site nmr-invisible
4
zeolite
4
nmr-invisible zeolite
4

Similar Publications