98%
921
2 minutes
20
New nucleoside derivatives containing the imidazole (Imd), pyridine or pyrimidine catalytic group were designed for site-specific acetylation of 2'-OH of the RNA ribose moiety. When the RNA substrate was acetylated in the presence of acetic anhydride under alkaline conditions, Probe (Imd) containing the imidazole catalytic group acetylated with a high selectivity to the 2'-OH of the uridine opposite the catalytic nucleotide. Probe (Py-4N) containing the pyridine group showed a higher catalytic activity under neutral conditions with a high selectivity for the 2'-OH group of the 5' side of the uridine opposite the catalytic nucleotide in about 80% modification yield within 10 min. This study has shown that the oligodeoxynucleotide incorporating the new nucleotide derivative with the catalytic group can be a useful tool for site-selective acetylation of RNA 2'-OH.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1248/cpb.c25-00068 | DOI Listing |
Inorg Chem
September 2025
Chemical Engineering Department, Delft University of Technology, 2629 HZ Delft, The Netherlands.
A key challenge in capturing CO from postcombustion gases is humidity due to competitive adsorption between CO and HO. Multivariate (MTV) metal-organic frameworks (MOFs) have been considered a promising option to address this problem, e.g.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Research Center of Advanced Catalytic Materials & Functional Molecular Synthesis, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, School of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing, 312000, China; Institute of Chemistry, Chinese Academy of Scien
Inspired by "the composition of catechol and amine groups in the adhesive proteins" of marine mussel and "brick-and-mortar" structure of nacre, we use polydopamine (PDA) as "mortar", graphene oxides (GO) nanosheets as "brick", and Pd ions as interfacial reinforcer, to fabricate nacre-like Pd enhanced PDA functionalized GO membranes (Pd@PDA/GO) with vacuum filtration-assisted assembly method. Meanwhile, in situ reduced Pd nanoclusters by PDA chains were well constrained within the resultant Pd@PDA/GO artificial nacre composites. Good interfacial adhesion with dense packing of the GO nanosheets was further confirmed with sub-nano level microstructure characterization by positron annihilation lifetime spectroscopy.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China. Electronic address:
The 5-hydroxymethylfurfural electrooxidation reaction (HMFOR) stands out due to the value-added production and mild conditions. However, its catalytic efficiency is hampered by sluggish kinetics. Herein, with a focus on optimizing the adsorption and activation of reaction molecules, a CoN-WN heterostructure catalyst is constructed for efficient HMFOR.
View Article and Find Full Text PDFJ Org Chem
September 2025
Faculty of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego St. 8, 61-614 Poznań, Poland; https://www.kucinskilab.com.
The development of efficient and broadly applicable silylation methodologies remains a central goal in synthetic organic and organosilicon chemistry. Traditionally, silylation reactions employ chlorosilanes or hydrosilanes, often necessitating the use of moisture-sensitive and corrosive reagents. Herein, we report a high-yielding, operationally simple, rapid, and economical silylation platform based on trifluoromethyltrimethylsilane (TMSCF) and catalytic potassium hydroxide (KOH).
View Article and Find Full Text PDFNanoscale
September 2025
Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, People's Republic of China.
The rational design of non-precious metal catalysts as a replacement for Pd is of great importance for catalyzing various important chemical reactions. To realize this purpose, the palladium-like superatom NbN was doped into a defective graphene quantum dot (GQD) model with a double-vacancy site to design a novel single superatom catalyst, namely, NbN@GQD, based on density functional theory (DFT), and its catalytic activity for the Suzuki reaction was theoretically investigated. Our results reveal that this designed catalyst exhibits satisfactory activity with a small rate-limiting energy barrier of 25.
View Article and Find Full Text PDF