Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Grape seed wastes are a rich source of bioactive polyphenols. This study compares the recovery efficiency of traditional maceration extraction (ME) with modern extraction techniques (ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), and accelerated solvent extraction (ASE)), revealing the selective extraction of polyphenolic compounds by different methods. UPLC-ESI-MS/MS analysis was used to identify and quantify 24 polyphenols. ASE showed the highest efficiency for phenolic acids (e.g., gallic acid, 231.75 μg/g) and proanthocyanidins (e.g., procyanidin B1, 126.18 μg/g), while MAE was optimal for flavonoids recovery (e.g., myricetin, 41.52 μg/g). Multivariate chemometric analysis revealed co-extraction patterns among structurally related compounds (e.g., flavan-3-ols with galloylated derivatives), linking extraction parameters to the selectivity of polyphenols. Integrating UPLC-ESI-MS/MS profiling of 24 polyphenols, we suggest that MAE/ASE is most suitable for antioxidant-rich nutraceuticals, while ME is optimal for thermally labile pharmaceuticals. This study provides practical strategies for the sustainable utilization of grape seed by-products, offering industry-specific solutions to reduce waste and improve the recovery of bioactive compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2025.144619 | DOI Listing |