Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Antibiotic contamination in sewer networks has significant environmental and health concerns worldwide, primarily due to its role in promoting bacterial resistance. In this literature review, antibiotic concentrations reported in urban sewers and hospital effluents, techniques for antimicrobial compound detection and quantification, and current modeling strategies are analyzed and discussed based on 91 papers published between 2014 and 2024. One-hundred and nine antibiotic compounds were reported across 80 studies, with sulfonamides, fluoroquinolones, and macrolides being the most frequently detected classes, while amphenicols and aminocyclitols were the least monitored. Advanced analytical techniques such as liquid chromatography and mass spectrometry are the most common approaches used for antibiotic quantification. Modeling efforts remain limited, with kinetic models, Risk Quotient (RQ) assessments, and Wastewater-Based Epidemiology (WBE) representing the main approaches identified. This review compiles 992 reports into a comprehensive dataset intended to support future research, especially for global monitoring, the development of predictive models, and the formulation of regulatory frameworks for managing antibiotic pollution in sewer systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wst.2025.053 | DOI Listing |