98%
921
2 minutes
20
Oxygenic photosynthetic organisms employ multiple photoprotection mechanisms. The major light-harvesting complex of photosystem II of (-LHCII) and that of spinach (-LHCII) are structurally analogous but differ in their pigment compositions. We have attempted to compare, by evaluating the rate of chlorophyll (Chl)-to-carotenoid (Car) triplet excitation transfer (TET), the photoprotection of - and -LHCII in light-harvesting and energy-quenched states and observed a fast and a slow TET pathway for the LHCIIs irrespective of the functional states. The fast one in a sub-nanosecond time scale is attributed to the TET from Chl 612 (603) to L1-Car (L2-Car), whereas the slow one in ∼10 ns is assigned to the TET from Chl 613 to L1-Car. Ongoing from the light-harvesting to the quenched state, the slow TET is accelerated from (14.0 ns) to (4.7 ns) for -LHCII and from (25.0 ns) to (17.0 ns) for -LHCII, becoming dominant for photoprotection at the L1 site. Thus, the TET enhancement and energy-quenching reactivity constitute the synergistic photoprotection of the LHCIIs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.5c00914 | DOI Listing |
J Phys Chem B
September 2025
Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China.
Light-harvesting complex IIs (LHCIIs) are the major antenna in higher plants, balancing light capture through photoprotection. While it naturally forms trimers, stress conditions can induce monomerization, altering pigment interactions. Here, we explored how molecular oxygen affects triplet excited-state dynamics in LHCII monomers using time-resolved transient absorption spectroscopy under aerobic and anaerobic conditions.
View Article and Find Full Text PDFChemistry
September 2025
Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie, Würzburg, 97074, Germany.
Photosensitization has emerged as a versatile tool to facilitate access to excited states under mild conditions, allowing for efficient and selective photochemical transformations. Herein, we report a very simple molecule, coronene bisimide (CBI), as a potent visible-light photosensitizer featuring a high extinction coefficient with a broadband absorption spanning from ultraviolet to green region of the visible spectrum, along with a long-lived triplet state generated via efficient intersystem crossing (ISC). Utilizing the triplet-triplet energy transfer (TTEnT) strategy, CBI catalyzes diverse reactions under green light irradiation.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, United States.
We report the first paramagnetic boron tetraradical, comprising four boraphenanthrene-type units with boryl radical centers bridged by a central tetraphenylethene (TPE) linker. With strongly π-accepting and sterically demanding cyclic(alkyl)(amino) carbene ligands (), spin densities localize on the boron-carbene fragments (92%), consistent with a true boron-centered tetraradical. Magnetic measurements of reveal minimal spin-spin coupling, consistent with four noninteracting = 1/2 centers.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Southwest United Graduate School, Kunming 650092, China.
Microbial-derived extracellular polymeric substances (EPS) and iron minerals are ubiquitous in aquatic environments, and they can influence the fate of organic micropollutants such as 17α-ethinylestradiol (EE2). However, the interactions between EPS and iron minerals, and their influence on EE2 photodegradation, are seldom addressed in the literature. This study explored the effects of EPS derived from different aerobic or anaerobic microbials on the reductive dissolution of ferrihydrite (Fhy) and subsequent EE2 photodegradation, with emphasis on the impact of Fe-EPS complexes formation.
View Article and Find Full Text PDFJ Phys Chem A
September 2025
School of Chemistry and Chemical Engineering, University of Southampton, Highfield, Southampton SO17 1BE, U.K.
Cyclacene carbon nanobelts are predicted to be more stable in certain vibrational states. Vibrational simulations using hybrid thermally assisted-occupation density functional theory (TAO-DFT) predict small but consistent singlet-triplet electronic excitation energy changes at the classical harmonic vibrational turning points of the smaller belts. Geometric and vibrational properties are also compared between hybrid Kohn-Sham DFT and TAO-DFT for [n]cyclacene ( = 6-14), where TAO-DFT is found to shorten the carbon-carbon bonds bridging between the two annulene ribbons and causes qualitative changes in the calculated infrared spectra.
View Article and Find Full Text PDF